数据结构之n--n(kruskal算法)
上代码:如果有疑问的话,欢迎随时留言!
- #include <stdio.h>
- //闹了好长时间才闹好,如果有不懂的地方可以留言
- //里面判断环的地方用到并查集
- //并查集资料:<a target="_blank" href="http://dongxicheng.org/structure/union-find-set/">http://dongxicheng.org/structure/union-find-set/</a>
- #define ENUM 15//边的数量
- #define VNUM 9//顶点的数量
- #define MV 0
- typedef struct _tag_Edge //存储边的信息
- {
- int begin;
- int end;
- int weight;//权值
- }Edge;
- int father[VNUM]; //存储
- int son[VNUM];
- int Matvix[VNUM][VNUM]=
- {//图
- {0, 10, MV, MV, MV, 11, MV, MV, MV},
- {10, 0, 18, MV, MV, MV, 16, MV, 12},
- {MV, 18, 0, 22, MV, MV, MV, MV, 8},
- {MV, MV, 22, 0, 20, MV, 24, 16, 21},
- {MV, MV, MV, 20, 0, 26, MV, 7, MV},
- {11, MV, MV, MV, 26, 0, 17, MV, MV},
- {MV, 16, MV, 24, MV, 17, 0, 19, MV},
- {MV, MV, MV, 16, 7, MV, 19, 0, MV},
- {MV, 12, 8, 21, MV, MV, MV, MV, 0},
- };
- void swap(Edge array[], int i, int j)
- {
- Edge temp = array[i];
- array[i] = array[j];
- array[j] = temp;
- }
- void SelectionSort(Edge array[], int len) // O(n*n)
- {
- int i = 0;
- int j = 0;
- int k = -1;
- for(i=0; i<len; i++)
- {
- k = i;
- for(j=i; j<len; j++)
- {
- if( array[j].weight < array[k].weight )
- {
- k = j;
- }
- }
- swap(array, i, k);
- }
- }
- int unionsearch(int x) //查找根结点+路径压缩
- {
- if(x != father[x])
- {//通过递归找到根结点,注意边最终的end为根结点
- father[x] = unionsearch(father[x]);
- }
- //father[x]为x的父结点
- return father[x];
- }
- int join(int x, int y) //合并
- {
- int root1, root2;
- root1 = unionsearch(x);
- root2 = unionsearch(y);
- if(root1 == root2) //为环
- return 0;
- else
- { //root2为root1的父结点
- father[root1] = root2;
- son[root2] += son[root1];
- }
- return 1;
- }
- int main()
- {
- int i, j;//要使用的循环变量
- int total = 0;//最后选出边的数量
- int sum = 0;//最后总权值
- int flag = 0;
- int eNUM = ENUM-1;
- Edge array[ENUM];//总共的边
- for(i=0; i<VNUM; ++i) //初始化
- {
- father[i] = i;
- son[i] = 1;
- }
- for(i=0; i<VNUM; i++)
- {
- for(j=0; j<VNUM; j++)
- {
- if((i<j) && (0 < Matvix[i][j]))
- {//给边的结构体初始化
- array[eNUM].begin = i;
- array[eNUM].end = j;
- array[eNUM--].weight= Matvix[i][j];
- }
- }
- }
- //排序 ,对边按照权值排序,从小到大
- SelectionSort(array, ENUM);
- for(i=0; i<ENUM; i++)
- {
- if(join(array[i].begin, array[i].end))
- {//判断是否成环
- total++; //边数加1
- sum += array[i].weight; //记录权值之和
- printf("%d -> %d weight:%d\n", array[i].begin, array[i].end, array[i].weight);
- }
- if(total == VNUM-1) //最小生成树条件:边数=顶点数-1
- {
- flag = 1;
- break;
- }
- }
- if(flag)
- printf("%d\n", sum);
- else
- printf("error.\n");
- return 0;
- }