virtualenv、Jupyter &tensorflow
安装virtualenv
virtualenv用于构建一个独立的python运行环境,避免包冲突的发生。
首先,我们需要安装pip,在这里我们采用的是Python3的版本,所以pip也是针对Python3的,执行以下命令: sudo apt-get install python3-pip
待安装完成后,通过pip安装virtualenv,如下: sudo pip3 install virtualenv
一切完毕后,我们可以通过在终端输入pip3
来看是否安装成功。如果安装成功进入下一步。
创建、**运行环境
我们可以按照这样的方式利用virtualenv来创建一个独立的Python环境: virtualenv <名称>
如果不想将第三方包复制过来,也可以加上一个--no-site-packages
参数。创建好之后,我们需要**这个环境:source <名称>/bin/activate
。当**环境后,我们可以看到命令行前多了一个(<名称>)
,如图所示:
在上图中,我们可以看到,命令行前多了一个(tensor)
,其中tensor正式该环境的“名称”。**环境之后,我们可以按照需要安装python包。
退出当前的环境,我们可以这样做:deactivate
。这样命令行将变回原来的样式。
安装相应的Python包
本文涉及的Python包主要包括:Jupyter、ipython、tensorflow。各自具体的情况我们将在以后的博客中研究。首先,我们在构建的环境中安装这些包: pip3 install jupyter ipython tensorflow
如果安装时出现权限问题请使用
sudo
。
但是到这里还并没有结束,要想将tensorflow和Jupyter Notebook结合起来,我们还需要借助一个工具——ipykernel。同样,我们通过pip来安装ipykernel:pip3 install ipykernel
。待完成后,我们将Jupyter的内核配置为特定的virtualenv就行了。大致的步骤如下: python -m ipykernel install --user --name <名称> --display-name "<Jupyter显示的名称>"
之后,我们启动Jupyter Notebook:jupyter notebook
。然后在其中选取所需要的内核,具体步骤如图所示:
之后,测试一下是否成功:
总结
大功告成!