【计算机系统】位运算与逻辑运算

计算机系统的位运算与逻辑运算

一、位

1、定义

二进制数字系统中数据存储的最小单位,即每个二进制数0或1就称为位。位也叫比特(bit),8个bit组成一个字节(byte),每个字节表示程序中的某些文本字符。字长(word size)表征了CPU一次能并行处理的最多二进制位数,例如32位机一次最多能处理32个bit组成的单元。

2、表示方法

位的本质是二进制数。由于一个byte由8位构成,即00000000(2)_{(2)} ~ 11111111(2)_{(2)},这种表示方法很冗长。把8位二进制数转成十进制为0(10)_{(10)} ~ 255(10)_{(10)},虽然表示起来方便,但是二-十进制转换很麻烦。因此引入了十六进制表示法,原因在于十六进制表示8位二进制数很简洁而且二-十六进制可以快速转换。以0x或0X打头的数字常量一般就是十六进制数。

3、位向量

固定长度为w的由二进制代数组成的行向量称为位向量。位向量的逻辑运算是元素级的逻辑运算,例如aa=[a(w1)a_{(w-1)},a(w2)a_{(w-2)},……,a1a_1,a0a_0],bb=[b(w1)b_{(w-1)},b(w2)b_{(w-2)},……,b1b_1,b0b_0],那么这两个位向量的逻辑与运算就是aa&bb=[a(w1)a_{(w-1)}&b(w1)b_{(w-1)},a(w2)a_{(w-2)}&b(w2)b_{(w-2)},……,a0a_0&b0b_0],注意此时的二进制代数视为表示逻辑真假的布尔代数。
任何“整型”数据类型都可以使用位运算。对于十六进制表示的字节进行位运算时,最好的方法是将十六进制转二进制,位运算后再转回十六进制,例如对char类型数据进行位运算。

4、位向量的应用

(1)表示有限集合

用位向量aa=[a(w1)a_{(w-1)},a(w2)a_{(w-2)},……,a1a_1,a0a_0]编码任何子集AA⊆{0,1,2……,w1w-1},当且仅当iiAAaia_i = 1,于是用与或非就可以分别进行有限集合的交并补集运算

(2)位向量掩码(BitMask)

通过位向量运算,有选择地使能或屏蔽某些信号(或权限等)的位向量,称为位向量掩码。
例如,给出xx=0x87654321,要求给出一个BitMask使其将除了xx的最低有效字节外其余位都取补,而最低有效字节不变。于是我们可以给出aa=~0xFF,然后将xxaa异或运算即可实现目标。下面要总结几点:
①1^x 可以实现对x取反,0^x可以实现保持x不变
②上例位向量还可以是aa = 0xFFFFFF00,然后直接进行xx^aa,但这样的缺点是代码的可移植性较差

5、移位运算

【计算机系统】位运算与逻辑运算
注意:
①位向量最高位为0时,算术右移与逻辑右移等价,因为把最高位视为符号位的话,有符号的正数和无符号数等价
②循环移位:若对于一个w位位向量,进行k≥w的移位运算,则此时位移量为k mod w,类似于循环队列的索引结构。但这种行为没有保证,编程时应尽可能保证k<w
③移位的优先级较低,移位运算时要注意运算顺序

二、布尔代数

1、定义

将逻辑真定义为二进制数1,逻辑假定义为二进制数0,这种表示逻辑运算的二进制代数称为布尔代数。利用布尔代数可以很好地研究逻辑推理。

2、逻辑运算

【计算机系统】位运算与逻辑运算

3、位运算与逻辑运算的关系

可以看出位级逻辑运算是元素级的布尔逻辑运算,即每个位向量元素进行0-1逻辑运算;而命题逻辑运算是把整个字节看成一个整体,将所有的非0的参数看成逻辑真(1),0看成逻辑假(0),所以就命题本身而言可以不为布尔代数,执行逻辑运算时是把整体看成一个布尔代数,再进行相应的逻辑运算。

三、小结

本篇博客是对CSAPP这部分内容的一个总结和理解,参考资料也是这本书,作为小白第一次写博客,希望各位指出不足,相互交流