三度其三——矢量场的旋度

  • 环量
  • 取有向闭合曲线,方向符合右手螺旋
    Q=LAl Q=\oint_{L}\vec A\cdot\vec l
    三度其三——矢量场的旋度
  • 一个空间有无穷多个曲面穿套而成,用有向曲线把一个接一个的曲面填充,研究任意一个环路情况足以描述这个图,这只是一种整体的概念,大小几何形状不变,空间方位
  • 河流有流速场,沿着流线对速度进行积分,环量不为0,这里有漩涡。漩涡围着转,相当于一个轴,当积分路径与轴垂直的平面在一个平面,积分值最大,轴与法线方向重合。
    三度其三——矢量场的旋度
  • 矢量场中我们关心通量的环路 n\vec n 取什么方向,环量最大,与数量场方向导数最大有相同概念。

  • 旋度
  • 限定环路的面积
    q=limΔl0lAlΔl q=\lim_{\Delta l\to0}\frac{\oint_{l}\vec A\cdot\vec l}{\Delta l}
  • 这个环量对应平均的密度
    q=(AzyAyz)cosα+(AxzAzx)cosβ+(AyxAxy)cosγ q=(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})cos\alpha+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})cos\beta+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})cos\gamma
  • cosα,cosβ,cosγcos\alpha,cos\beta,cos\gamman\vec n 方向的单位矢量。
    n=cosαex+cosβey+cosγez \vec n ^{\circ}=cos\alpha\vec e_x+cos\beta\vec e_y+cos\gamma\vec e_z

  • V=(AzyAyz)ex+(AxzAzx)ey+(AyxAxy)ezq=Vn \vec V=(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec e_x+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec e_y+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec e_z\\ q=\vec V\cdot\vec n ^{\circ}
  • n\vec n 方向的环量密度,即 V\vec Vn\vec n 方向的投影,V\vec V 取决于 A\vec Ax,yx,y,方向的偏导数,A\vec A一旦确定则V\vec V 也确定。

rotA=(AzyAyz)ex+(AxzAzx)ey+(AyxAxy)ez rot \vec A=(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec e_x+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec e_y+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec e_z
rotA=×A=exeyezxyzAxAyAz rot \vec A = \bigtriangledown \times \vec A = \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z \end{matrix} \right |

  • 重要公式
    (A×B)=B×AA×B \triangledown \cdot(\vec A \times \vec B)= \vec B \cdot \triangledown \times\vec A-\vec A\cdot\triangledown\times\vec B
  • 证明
    =xex+yey+zez \triangledown=\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z
    A×B=exeyezAxAyAzBxByBz=(AyBzAzBy)ex+(AzBxAxBz)ey+(AxByAyBx)ez \vec A \times \vec B=\left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ A_x & A_y & A_z\\ B_x & B_y & B_z \end{matrix} \right |\\ =(A_yB_z-A_zB_y)\vec e_x+(A_zB_x-A_xB_z)\vec e_y+(A_xB_y-A_yB_x)\vec e_z
    (A×B)=(xex+yey+zez)((AyBzAzBy)ex+(AzBxAxBz)ey+(AxByAyBx)ez)=(AyBzAzBy)x+(AzBxAxBz)y+(AxByAyBx)z=xyzAxAyAzBxByBz \triangledown \cdot(\vec A \times \vec B)=(\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z) \cdot\bigg((A_yB_z-A_zB_y)\vec e_x+(A_zB_x-A_xB_z)\vec e_y+(A_xB_y-A_yB_x)\vec e_z\bigg)\\ =\frac{\partial{(A_yB_z-A_zB_y)}}{\partial x}+\frac{\partial{(A_zB_x-A_xB_z)}}{\partial y}+\frac{\partial{(A_xB_y-A_yB_x)}}{\partial z}\\ =\left | \begin{matrix} \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z\\ B_x & B_y & B_z \end{matrix} \right |\\

B×AA×B=BexeyezxyzAxAyAzAexeyezxyzBxByBz=(Bxex+Byey+Bzez)((AzyAyz)ex+(AxzAzx)ey+(AyxAxy)ez)(Axex+Ayey+Azez)((BzyByz)ex+(BxzBzx)ey+(ByxBxy)ez)=Bx(AzyAyz)+By(AxzAzx)+Bz(AyxAxy)(Ax(BzyByz)+Ay(BxzBzx)+Az(ByxBxy))BzAyxByAzx+AyBzxAzByx=(BzAyx+AyBzx)(ByAzx+AzByx)=(AyBz)x(AzBy)x=(AyBzAzBy)x \vec B \cdot \triangledown \times\vec A-\vec A\cdot\triangledown\times\vec B=\vec B \cdot \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z \end{matrix} \right | - \vec A \cdot \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ B_x & B_y & B_z \end{matrix}\right | \\ = (B_x\vec e_x+B_y\vec e_y+B_z\vec e_z)\cdot\bigg( (\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec e_x+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec e_y+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec e_z \bigg)\\ -(A_x\vec e_x+A_y\vec e_y+A_z\vec e_z)\cdot\bigg( (\frac{\partial B_z}{\partial y}-\frac{\partial B_y}{\partial z})\vec e_x+(\frac{\partial B_x}{\partial z}-\frac{\partial B_z}{\partial x})\vec e_y+(\frac{\partial B_y}{\partial x}-\frac{\partial B_x}{\partial y})\vec e_z \bigg)\\ =B_x( \frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})+ B_y(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})+ B_z(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\\ -\bigg(A_x( \frac{\partial B_z}{\partial y}-\frac{\partial B_y}{\partial z})+ A_y(\frac{\partial B_x}{\partial z}-\frac{\partial B_z}{\partial x})+ A_z(\frac{\partial B_y}{\partial x}-\frac{\partial B_x}{\partial y})\bigg)\\ \because B_z\frac{\partial A_y}{\partial x}-B_y\frac{\partial A_z}{\partial x}+ A_y\frac{\partial B_z}{\partial x}- A_z\frac{\partial B_y}{\partial x}= \bigg(B_z\frac{\partial A_y}{\partial x}+ A_y\frac{\partial B_z}{\partial x}\bigg)-\bigg(B_y\frac{\partial A_z}{\partial x}+A_z\frac{\partial B_y}{\partial x} \bigg)\\ =\frac{\partial( A_yB_z)}{\partial x}-\frac{\partial( A_zB_y)}{\partial x}=\frac{\partial( A_yB_z-A_zB_y)}{\partial x}

  • 同理其他三项可得,证毕
  • 哈密尔顿算子首先考虑矢量性再考虑微分性
    ×(μA)=μ×A+μ×A \triangledown\times(\mu\vec A)=\mu\triangledown\times\vec A+\triangledown\mu\times\vec A
  • μ\mu 是标量函数,取了梯度变为矢量
    ×(μ)0 \triangledown\times(\triangledown\mu)\equiv 0
    μ=μxex+μyey+μxez×(μ)=exeyezxyzμxμyμz=(2μzy2μyz)ex+=0 \triangledown\mu=\frac{\partial \mu}{\partial x}\vec e_x+\frac{\partial \mu}{\partial y}\vec e_y+\frac{\partial\mu}{\partial x}\vec e_z\\ \triangledown\times(\triangledown\mu)=\left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ \frac{\partial\mu}{\partial x} & \frac{\partial\mu}{\partial y} & \frac{\partial\mu}{\partial z} \end{matrix} \right |\\ =\bigg(\frac{\partial^2\mu }{\partial z\partial y}-\frac{\partial^2\mu }{\partial y\partial z}\bigg)\vec e_x+\cdots=0
  • 取旋度仍为矢量
    (×A)0 \triangledown\cdot(\triangledown\times\vec A)\equiv 0
    (×A)=xyzxyzAxAyAz=0 \triangledown\cdot(\triangledown\times\vec A)= \left | \begin{matrix} \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z \end{matrix} \right | =0
  • 两个恒等式在静电场分析和恒定磁场分析里很重要
  • 拉普拉斯算子
    (μ)=2μ \triangledown\cdot(\triangledown\mu)=\triangledown^2\mu
    (μ)=(xex+yey+zez)(μxex+μyey+μxez)=2μx2+2μy2+2μz2 \triangledown\cdot(\triangledown\mu)=(\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z)(\frac{\partial \mu}{\partial x}\vec e_x+\frac{\partial \mu}{\partial y}\vec e_y+\frac{\partial\mu}{\partial x}\vec e_z)\\ =\frac{\partial^2\mu }{\partial x^2}+\frac{\partial^2\mu }{\partial y^2}+\frac{\partial^2\mu }{\partial z^2}
  • 旋了又旋,矢量的拉普拉斯算子
    ×(×A)=(A)2A \triangledown\times(\triangledown\times\vec A)=\triangledown\cdot(\triangledown\cdot\vec A)-\triangledown^2\vec A
    ×(×A)=×((AzyAyz)ex+(AxzAzx)ey+(AyxAxy)ez)=exeyezxyz(AzyAyz)(AxzAzx)(AyxAxy)=(AyxyAx2yAx2z+Azxz)ex+(AzyzAy2zAy2x+Axyx)ey+(AxzxAz2xAz2y+Ayzy)ez=(Ayxy+Azxz)ex+(Azyz+Axyx)ey+(Axzx+Ayzy)ez((Ax2y+Ax2z)ex+(Ay2z+Ay2x)ey+(Az2x+Az2y)ez) \triangledown\times(\triangledown\times\vec A)=\triangledown\times\bigg((\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec e_x+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec e_y+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec e_z\bigg)\\ = \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ (\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}) &(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}) &(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}) \end{matrix} \right | \\ =(\frac{\partial A_y}{\partial x\partial y}-\frac{\partial A_x}{\partial^2 y}-\frac{\partial A_x}{\partial^2 z}+\frac{\partial A_z}{\partial x\partial z})\vec e_x\\ +(\frac{\partial A_z}{\partial y\partial z}-\frac{\partial A_y}{\partial^2 z}-\frac{\partial A_y}{\partial^2 x}+\frac{\partial A_x}{\partial y\partial x})\vec e_y\\ +(\frac{\partial A_x}{\partial z\partial x}-\frac{\partial A_z}{\partial^2 x}-\frac{\partial A_z}{\partial^2 y}+\frac{\partial A_y}{\partial z\partial y})\vec e_z\\ =(\frac{\partial A_y}{\partial x\partial y}+\frac{\partial A_z}{\partial x\partial z})\vec e_x+(\frac{\partial A_z}{\partial y\partial z}+\frac{\partial A_x}{\partial y\partial x})\vec e_y+(\frac{\partial A_x}{\partial z\partial x}+\frac{\partial A_y}{\partial z\partial y})\vec e_z\\ -\bigg((\frac{\partial A_x}{\partial^2 y}+\frac{\partial A_x}{\partial^2 z})\vec e_x+(\frac{\partial A_y}{\partial^2 z}+\frac{\partial A_y}{\partial^2 x})\vec e_y+(\frac{\partial A_z}{\partial^2 x}+\frac{\partial A_z}{\partial^2 y})\vec e_z \bigg)
    (A)=(Axx+Ayy+Azz)=(xex+yey+zez)(Axx+Ayy+Azz)=Ax2xex+(Ayyx+Azzx)ex+ \triangledown\cdot(\triangledown\cdot\vec A)=\triangledown\cdot\bigg(\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}\bigg)\\ =\bigg(\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z\bigg)\cdot\bigg(\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}\bigg)\\ =\frac{\partial A_x}{\partial^2 x}\vec e_x+\bigg(\frac{\partial A_y}{\partial y\partial x}+\frac{\partial A_z}{\partial z\partial x}\bigg)\vec e_x+\cdots
    2A=2Axex+2Ayey+2Azez=(2Axx2+2Axy2+2Axz2)ex+(2Ayx2+2Ayy2+2Ayz2)ey+(2Azx2+2Azy2+2Azz2)ez \triangledown^2\vec A=\triangledown^2A_x\vec e_x+\triangledown^2A_y\vec e_y+\triangledown^2A_z\vec e_z\\ =\bigg(\frac{\partial^2A_x }{\partial x^2}+\frac{\partial^2A_x }{\partial y^2}+\frac{\partial^2A_x }{\partial z^2}\bigg)\vec e_x\\ +\bigg(\frac{\partial^2A_y }{\partial x^2}+\frac{\partial^2A_y }{\partial y^2}+\frac{\partial^2A_y }{\partial z^2}\bigg)\vec e_y\\ +\bigg(\frac{\partial^2A_z }{\partial x^2}+\frac{\partial^2A_z }{\partial y^2}+\frac{\partial^2A_z }{\partial z^2}\bigg)\vec e_z
    (A)2A=Ax2xex+(Ayyx+Azzx)ex(2Axx2+2Axy2+2Axz2)ex+=(Ayyx+Azzx)ex(2Axy2+2Axz2)ex+ \triangledown\cdot(\triangledown\cdot\vec A)-\triangledown^2\vec A\\ =\frac{\partial A_x}{\partial^2 x}\vec e_x+\bigg(\frac{\partial A_y}{\partial y\partial x}+\frac{\partial A_z}{\partial z\partial x}\bigg)\vec e_x-\bigg(\frac{\partial^2A_x }{\partial x^2}+\frac{\partial^2A_x }{\partial y^2}+\frac{\partial^2A_x }{\partial z^2}\bigg)\vec e_x+\cdots\\ =\bigg(\frac{\partial A_y}{\partial y\partial x}+\frac{\partial A_z}{\partial z\partial x}\bigg)\vec e_x-\bigg(\frac{\partial^2A_x }{\partial y^2}+\frac{\partial^2A_x }{\partial z^2}\bigg)\vec e_x+\cdots
  • 其它三项均可证得,证毕