算法之贪心

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。

理解贪心算法

先通过一个例子来了解贪心算法,假设我们有一个可以容纳 100kg 物品的背包,可以装各种物品。我们有以下 5 种豆子,每种豆子的总量和总价值都各不相同。为了让背包中所装物品的总价值最大,我们如何选择在背包中装哪些豆子?每种豆子又该装多少呢?

算法之贪心
先算一算每个物品的单价,按照单价由高到低依次来装就好了。单价从高到低排列,依次是:黑豆、绿豆、红豆、青豆、黄豆,所以,我们可以往背包里装 20kg 黑豆、30kg 绿豆、50kg 红豆。这个例子显而易见,运用了贪心思想。

贪心思想解决问题的步骤如下:

第一步,当看到这类问题的时候,首先要联想到贪心算法:针对一组数据,定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。类比到刚刚的例子,限制值就是重量不能超过 100kg,期望值就是物品的总价值。这组数据就是 5 种豆子。从中选出一部分,满足重量不超过 100kg,并且总价值最大。
第二步,尝试看下这个问题是否可以用贪心算法解决:每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据。类比到刚刚的例子,我们每次都从剩下的豆子里面,选择单价最高的,也就是重量相同的情况下,对价值贡献最大的豆子。
第三步,举几个例子看下贪心算法产生的结果是否是最优的:大部分情况下,举几个例子验证一下就可以了。严格地证明贪心算法的正确性,是非常复杂的,需要涉及比较多的数学推理。而且,从实践的角度来说,大部分能用贪心算法解决的问题,贪心算法的正确性都是显而易见的,也不需要严格的数学推导证明。

用贪心算法解决问题的思路,并不能总给出最优解

在一个有权图中,我们从顶点 S 开始,找一条到顶点 T 的最短路径(路径中边的权值和最小)。贪心算法的解决思路是,每次都选择一条跟当前顶点相连的权最小的边,直到找到顶点 T。按照这种思路,我们求出的最短路径是 S->A->E->T,路径长度是 1+4+4=9。
算法之贪心
这种贪心的选择方式,最终求的路径并不是最短路径,因为路径 S->B->D->T 才是最短路径,因为这条路径的长度是 2+2+2=6。

在这个问题上,贪心算法不工作的主要原因是,前面的选择,会影响后面的选择。如果我们第一步从顶点 S 走到顶点 A,那接下来面对的顶点和边,跟第一步从顶点 S 走到顶点 B,是完全不同的。所以,即便第一步选择最优的走法(边最短),但有可能因为这一步选择,导致后面每一步的选择都很糟糕,最终也就无缘全局最优解了。

贪心算法实战分析

掌握贪心算法需要多练,只要多练几道题就会有感觉了。

1:分糖果

我们有 m 个糖果和 n 个孩子。我们现在要把糖果分给这些孩子吃,但是糖果少,孩子多(m<n),所以糖果只能分配给一部分孩子。

每个糖果的大小不等,这 m 个糖果的大小分别是 s1,s2,s3,……,sm。除此之外,每个孩子对糖果大小的需求也是不一样的,只有糖果的大小大于等于孩子的对糖果大小的需求的时候,孩子才得到满足。假设这 n 个孩子对糖果大小的需求分别是 g1,g2,g3,……,gn。

如何分配糖果,能尽可能满足最多数量的孩子?

我们可以把这个问题抽象成,从 n 个孩子中,抽取一部分孩子分配糖果,让满足的孩子的个数(期望值)是最大的。这个问题的限制值就是糖果个数 m。

我们现在来看看如何用贪心算法来解决。对于一个孩子来说,如果小的糖果可以满足,我们就没必要用更大的糖果,这样更大的就可以留给其他对糖果大小需求更大的孩子。另一方面,对糖果大小需求小的孩子更容易被满足,所以,我们可以从需求小的孩子开始分配糖果。因为满足一个需求大的孩子跟满足一个需求小的孩子,对我们期望值的贡献是一样的。

我们每次从剩下的孩子中,找出对糖果大小需求最小的,然后发给他剩下的糖果中能满足他的最小的糖果,这样得到的分配方案,也就是满足的孩子个数最多的方案。

2:钱币找零

这个问题在我们的日常生活中更加普遍。假设我们有 1 元、2 元、5 元、10 元、20 元、50 元、100 元这些面额的纸币,它们的张数分别是 c1、c2、c5、c10、c20、c50、c100。我们现在要用这些钱来支付 K 元,最少要用多少张纸币呢?

在生活中,我们肯定是先用面值最大的来支付,如果不够,就继续用更小一点面值的,以此类推,最后剩下的用 1 元来补齐。

在贡献相同期望值(纸币数目)的情况下,我们希望多贡献点金额,这样就可以让纸币数更少,这就是一种贪心算法的解决思路。直觉告诉我们,这种处理方法就是最好的。实际上,要严谨地证明这种贪心算法的正确性,需要比较复杂的、有技巧的数学推导,我不建议你花太多时间在上面,不过如果感兴趣的话,可以自己去研究下。