so.1.0.0.rc3_宣布ML.NET 1.0 RC – .NET的机器学习
so.1.0.0.rc3
ML.NET is an open-source and cross-platform machine learning framework (Windows, Linux, macOS) for .NET developers. Using ML.NET, developers can leverage their existing tools and skillsets to develop and infuse custom AI into their applications by creating custom machine learning models for common scenarios like Sentiment Analysis, Recommendation, Image Classification and more!.
ML.NET是面向.NET开发人员的开源和跨平台机器学习框架(Windows,Linux,macOS)。 使用ML.NET ,开发人员可以通过为常见场景(如情感分析,推荐,图像分类等)创建自定义机器学习模型,从而利用其现有工具和技能集将自定义AI注入并注入到其应用程序中。
Today we’re announcing the ML.NET 1.0 RC (Release Candidate) (version 1.0.0-preview
) which is the last preview release before releasing the final ML.NET 1.0 RTM in 2019 Q2 calendar year.
今天,我们宣布ML.NET 1.0 RC(发布候选版本) (版本1.0.0-preview
)是在2019年第二季度发布最终的ML.NET 1.0 RTM之前的最后一个预览版。
Soon we will be ending the first main milestone of a great journey in the open that started on May 2018 when releasing ML.NET 0.1 as open source. Since then we’ve been releasing monthly, 12 preview releases so far, as shown in the roadmap below:
即将于2018年5月发布ML.NET 0.1作为开放源代码时,我们将结束开放中伟大旅程的第一个主要里程碑。 从那时起,我们每月发布一次,到目前为止,已经发布了12个预览版本,如下图所示:
In this release (ML.NET 1.0 RC) we have initially concluded our main API changes. For the next sprint we are focusing on improving documentation and samples and addressing major critical issues if needed.
在此版本( ML.NET 1.0 RC)中,我们初步得出了主要的API更改。 对于下一个冲刺,我们将重点放在改进文档和示例,并在需要时解决主要的关键问题。
The goal is to avoid any new breaking changes moving forward.
目的是避免任何新的重大变化。
ML.NET 1.0 RC时间范围内的更新 (Updates in ML.NET 1.0 RC timeframe)
-
Segregation of stable vs. preview version of ML.NET packages: Heading ML.NET 1.0, most of the functionality in ML.NET (around 95%) is going to be released as stable (version 1.0).
稳定版与预览版ML.NET包的隔离:标题为ML.NET 1.0,ML.NET中的大多数功能(约95%)将作为稳定版(1.0版)发布。
You can review the reference list of the ‘stable’ packages and classes here.
您可以在此处查看“稳定”包和类的参考列表 。
However, there are a few feature-areas which still won’t be in RTM state when releasing ML.NET 1.0. Those features still kept as preview are being categorized as preview packages with the version
0.12.0-preview
.但是,有一些功能区域在发布ML.NET 1.0时仍不会处于RTM状态。 那些仍保留为预览的功能将被分类为
0.12.0-preview
版本的预览包。The main packages that will continue in preview state after ML.NET 1.0 is released are the following (
0.12 version packages
):发布ML.NET 1.0后将继续以预览状态运行的主要程序包如下(
0.12 version packages
):- TensorFlow components TensorFlow组件
- Onnx components Onnx组件
- TimeSeries components TimeSeries组件
- Recommendadtions components 推荐组件
You can review the full reference list of “after 1.0” preview packages and classes (0.12.0-preview) here.
-
IDataView moved to Microsoft.ML namespace : One change in this release is that we have moved IDataView back into Microsoft.ML namespace based on feedback that we received.
IDataView移至Microsoft.ML命名空间 :此版本中的一项更改是,根据收到的反馈,我们已将IDataView移回Microsoft.ML命名空间。
-
TensorFlow-support fixes: TensorFlow is an open source machine learning framework used for deep learning scenarios (such as computer vision and natural language processing). ML.NET has support for using TensorFlow models, but in ML.NET version 0.11 there were a few issues that have been fixed for the 1.0 RC release.
TensorFlow支持修复程序: TensorFlow是一个用于深度学习场景(例如计算机视觉和自然语言处理)的开源机器学习框架。 ML.NET支持使用TensorFlow模型,但在ML.NET版本0.11中,有一些问题已针对1.0 RC版本进行了修复。
You can review an example of ML.NET code running a TensorFlow model here.
-
Release Notes for ML.NET 1.0 RC: You can check out additional release notes for 1.0 RC here.
ML.NET 1.0 RC发行说明 :您可以在此处查看1.0 RC的其他发行说明。
ML.NET 1.0 Release Candidate中的重大更改 (Breaking changes in ML.NET 1.0 Release Candidate)
For your convenience, if you are moving your code from ML.NET v0.11 to v0.12, you can check out the breaking changes list that impacted our samples.
为了方便起见,如果要将代码从ML.NET v0.11迁移到v0.12,则可以查看影响我们的示例的重大更改列表 。
计划去生产? (Planning to go to production?)
If you are using ML.NET in your app and looking to go into production, you can talk to an engineer on the ML.NET team to:
如果您在应用程序中使用ML.NET并打算投入生产,则可以与ML.NET团队的工程师联系以:
-
Get help implementing ML.NET successfully in your application.
-
Provide feedback about ML.NET.
提供有关ML.NET的反馈。
-
Demo your app and potentially have it featured on the ML.NET homepage, .NET Blog, or other Microsoft channel.
演示您的应用程序,并可能在ML.NET主页,.NET博客或其他Microsoft频道上展示该应用程序。
Fill out this form and leave your contact information at the end if you’d like someone from the ML.NET team to contact you.
如果您希望ML.NET团队中的某人与您联系,请填写此表单并在最后保留您的联系信息。
在发布ML.NET 1.0之前做好准备! (Get ready for ML.NET 1.0 before it releases!)
As mentioned, ML.NET 1.0 is almost here! You can get ready before it releases by researching the following resources:
如前所述,ML.NET 1.0即将发布! 您可以通过研究以下资源在发布之前做好准备:
Get started with ML.NET here.
Next, going further explore some other resources:
接下来,进一步探索其他一些资源:
-
Tutorials and resources at the Microsoft Docs ML.NET Guide
-
Sample apps using ML.NET at the machinelearning-samples GitHub repo
在Machinelearning -samples GitHub repo上使用ML.NET的示例应用程序
-
Important ML.NET concepts for understanding the new API are introduced here
-
“How to” guides that show how to use these APIs for a variety of scenarios can be found here
可以在此处找到显示如何在各种情况下使用这些API的“操作方法”指南
We will appreciate your feedback by filing issues with any suggestions or enhancements in the ML.NET GitHub repo to help us shape ML.NET and make .NET a great platform of choice for Machine Learning.
我们将通过在ML.NET GitHub存储库中提出任何建议或增强功能来提出问题,以帮助我们塑造ML.NET并使.NET成为机器学习的绝佳平台,我们将感谢您的反馈。
Thanks and happy coding with ML.NET!
感谢并使用ML.NET进行编码!
The ML.NET Team.
ML.NET团队。
This blog was authored by Cesar de la Torre plus additional contributions of the ML.NET team
该博客由Cesar de la Torre撰写,加上ML.NET团队的其他贡献
塞萨尔德拉托雷 (Cesar De la Torre)
Principal Program Manager, .NET
.NET首席项目经理
so.1.0.0.rc3