<虹膜识别>1.opencv3同心圆的提取
在网上查了很多资料,但是有关同心圆提取切割的项目很少,我把我的思路写下来,还没有进行完善,因为要一步一步得做。
刚开始做先将复杂问题进行简化,假设我们知道同心圆的坐标位置,也就是这个同心圆位于整幅图像的正中央。那么我们要做的:
第一步,识别两个圆在图像中的位置,它们的圆心相同,只是半径不同。然后先把大圆切下来,存入image1中,再把原图中的小圆切下来,存入image2中。
第二步,现在我们得到了两个新图像,image1和image2,分别是在原图基础上挖去了一个大圆和一个小圆。下面我们用opencv3自带的subtract函数,对两幅图像进行相减,就能得到圆环也就是同心圆了。
如图:
第三步,进行极坐标变换,对于虹膜识别这个项目来说,抽象成数学模型就是将圆环展开成矩形。是通过极坐标的逆变换来实现的。但是这个我转换之后还是灰度图像,需要进一步进行处理。
下面是代码(代码借鉴了网上很多人的例子,我把它根据具体问题处理了一下):
说明:这个代码只是初步代码,还有好多地方需要根据具体情况进行修改。先把这部分工作记录下来,算是个思路。
#include <opencv2/opencv.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<iostream>
using namespace cv;
using namespace std;
bool polar_to_cartesian(cv::Mat& mat_p, cv::Mat& mat_c, double rows_c, double cols_c);
int main(int argc,char* argv[])
{
Mat image = imread("/Users/oumoemoe/Downloads/timg-3.jpeg");
Mat image1(image.rows, image.cols, image.type(), Scalar(180, 120, 50));//, Scalar(180, 120, 50)
Mat image2(image.rows, image.cols, image.type(), Scalar(180, 120, 50));
Mat image3(image.rows, image.cols, image.type(), Scalar(180, 120, 50));
Mat image4(image.rows, image.cols, image.type(), Scalar(180, 120, 50));
Point center(image.cols/2,image.rows/2);
float radius = image.rows/2;
float radius1=image.rows/4;
circle(image, center, radius, Scalar(0, 200, 100), 2, 8, 0);
for (int x = 0; x < image.cols; x++)
{
for (int y = 0; y < image.rows; y++)
{
int temp = ((x - center.x) * (x - center.x) + (y - center.y) *(y - center.y));
if (temp < (radius * radius))
{
image1.at<Vec3b>(Point(x, y))[0] = image.at<Vec3b>(Point(x, y))[0];
image1.at<Vec3b>(Point(x, y))[1] = image.at<Vec3b>(Point(x, y))[1];
image1.at<Vec3b>(Point(x, y))[2] = image.at<Vec3b>(Point(x, y))[2];
}
else
{
image2.at<Vec3b>(Point(x, y))[0] = image.at<Vec3b>(Point(x, y))[0];
image2.at<Vec3b>(Point(x, y))[1] = image.at<Vec3b>(Point(x, y))[1];
image2.at<Vec3b>(Point(x, y))[2] = image.at<Vec3b>(Point(x, y))[2];
}
}
}
for (int x = 0; x < image.cols; x++)
{
for (int y = 0; y < image.rows; y++)
{
int temp = ((x - center.x) * (x - center.x) + (y - center.y) *(y - center.y));
if (temp < (radius1 * radius1))
{
image3.at<Vec3b>(Point(x, y))[0] = image.at<Vec3b>(Point(x, y))[0];
image3.at<Vec3b>(Point(x, y))[1] = image.at<Vec3b>(Point(x, y))[1];
image3.at<Vec3b>(Point(x, y))[2] = image.at<Vec3b>(Point(x, y))[2];
}
else
{
image4.at<Vec3b>(Point(x, y))[0] = image.at<Vec3b>(Point(x, y))[0];
image4.at<Vec3b>(Point(x, y))[1] = image.at<Vec3b>(Point(x, y))[1];
image4.at<Vec3b>(Point(x, y))[2] = image.at<Vec3b>(Point(x, y))[2];
}
}
}
Mat dstImage;
subtract(image2, image4, dstImage,Mat(),-1);
// imshow("image1", image1);
imshow("image2", image2);
// imshow("image3", image3);
imshow("image4", image4);
imshow("dstImage", dstImage);
Mat dstImage2;
polar_to_cartesian(dstImage, dstImage2, 2*radius-2*radius1, 2*3.14*radius);
imshow("final", dstImage2);
while (uchar(waitKey() != 'q')) {}
return 0;
}
bool polar_to_cartesian(cv::Mat& mat_p, cv::Mat& mat_c, double rows_c, double cols_c)//极坐标转换成普通坐标,也就是圆转方
{
mat_c = cv::Mat::zeros(rows_c, cols_c, CV_8UC1);
int polar_d = mat_p.cols;
double polar_r = polar_d / 2.0; // 圆图半径
double delta_r = polar_r / rows_c; //半径因子
double delta_t = 2.0*3.1415 / cols_c; //角度因子
double center_polar_x = (polar_d - 1) / 2.0;
double center_polar_y = (polar_d - 1) / 2.0;
for (int i = 0; i < cols_c; i++)
{
double theta_p = i * delta_t; //方图第i列在圆图对应线的角度
double sin_theta = std::sin(theta_p);
double cos_theta = std::cos(theta_p);
for (int j = 0; j < rows_c; j++)
{
double temp_r = j * delta_r; //方图第j行在圆图上对应的半径长度
int polar_x = (int)(center_polar_x + temp_r * cos_theta);
int polar_y = (int)(center_polar_y - temp_r * sin_theta);
mat_c.ptr<uchar>(j)[i] = mat_p.ptr<uchar>(polar_y)[polar_x];
}
}
return true;
}