logistic损失函数推导

\qquad Sklearn中逻辑回归的损失函数的推导:
logistic损失函数推导
\qquad假设y的标签为1和-1,用极大似然估计法估计模型参数,P(Y=1Xi)P(Y=1|X_i)=h(XiTW+C)h(X_i^TW+C)=11+exp((XiTW+C))\frac{1}{1+exp(-(X_i^TW+C))},则目标为估计最大化下列概率的参数:
Step1:
\qquad i,yi=1\prod_{i,y_i=1}P(Y=1Xi)P(Y=1|X_i)i,yi=1\prod_{i,y_i=-1}P(Y=1Xi)P(Y=-1|X_i)
\qquad=i,yi=1\prod_{i,y_i=1}P(Y=1X=i)P(Y=1|X=i)i,yi=1\prod_{i,y_i=-1}(1P(Y=1X=i))(1-P(Y=1|X=i))
\qquad =i,yi=1\prod_{i,y_i=1}h(XiTW+C)h(X_i^TW+C)i,yi=1\prod_{i,y_i=-1}h((XiTW+C))h(-(X_i^TW+C))
\qquad=i,yi\prod_{i,y_i}h(yi(XiTW+C))h(y_i(X_i^TW+C))
\qquad对数化之后不影响求参过程,则目标变为求使得Σi,yi\Sigma_{i,y_i}log(h(yi(XiTW+C)))log(h(y_i(X_i^TW+C)))最大化的参数。为将其转化为损失函数,目标转为最小化-Σi,yi\Sigma_{i,y_i}log(h(yi(XiTW+C)))log(h(y_i(X_i^TW+C)))的参数,则:
\qquad-Σi,yi\Sigma_{i,y_i}log(h(yi(XiTW+C)))log(h(y_i(X_i^TW+C)))
\qquad=-Σi,yi\Sigma_{i,y_i}log(11+exp(yi(XiTW+C)))log(\frac{1}{1+exp(-y_i(X_i^TW+C))})
\qquad=Σi,yi\Sigma_{i,y_i}log(1+exp(yi(XiTW+C)))log(1+exp(-y_i(X_i^TW+C)))

\qquad推导完成!撒花撒花撒花。非常感谢sanshun大佬的大力支持,大家有空可以去大佬的博客逛逛呀sanshun博客,会慢慢更新哦