python matplotlib坐标变换 tcy shanghai

坐标系  2018/10/29

======================================================================
1.1.分类:
    数据坐标系:#描述数据空间中位置的坐标系
    子图坐标系:#描述子图中位置的坐标系,子图左下角坐标(0,0)右上角坐标(1,1)
    图表坐标系:#一幅图表可包含多个子图,且子图周围可留有空白;
              #用图表坐标系描述图表显示区域中的某个点。图表左下角坐标(0,0)右上角坐标(1,1)
    窗口坐标系:#它是绘图窗口中以像素为单位的坐标系。不包含标题栏、工具条及状态栏部分
              #左下角坐标(0,0)右上角坐标(width,height)

======================================================================
1.2.matplotlib下绘图窗口的坐标变换
坐标系  变换对象             描述
数据    ax.transData        用户数据坐标系,由xlim和ylim控制
轴域    ax.transAxes        轴域坐标系;(0,0)轴域左下角,(1,1)是轴域右上角
图形    fig.transFigure     图形坐标系;(0,0)图形左下角,(1,1)是图形右上角
显示    None                显示器像素坐标系; (0,0)显示器左下角,(width, height)是显示器右上角,像素单位
                           # 或用恒等变换matplotlib.transforms.IdentityTransform()来代替None。
# Axes对象的transData属性是数据坐标变换对象,
# transAxes属性是子图坐标变换对象。
# figure对象的transFigure属性是图表坐标变换对象
======================================================================
1.3.注意:数据变换中的差异

# 数据和显示数据不会完全相同。 因为显示点是在显示图形之前计算的,
# 并且 GUI 后端可以在创建图形时稍微调整图形大小。 如果你自己调整图的大小,效果更明显。
# 可连接到'on_draw'事件来更新图上图坐标;

https://blog.****.net/wizardforcel/article/details/54782600
http://blog.sciencenet.cn/home.php?mod=space&uid=3296568&do=blog&quickforward=1&id=1029689
官网:
http://matplotlib.org/users/transforms_tutorial.html
======================================================================

2.1.实例1
from matplotlib import pyplot as plt
from threading import Thread
import time
import sys
import numpy as np
# import matplotlib.pyplot as plt

XY=[0,0,0]
x = (8,9);y = (8,9)
#-------------------------------
#坐标变换处理函数
def coordinate_change(fig, ax, xy):
    x=xy[1];y=xy[2]
    inv11 = ax.transData.inverted()   # matplotlib.transforms.CompositeGenericTransform
    inv12 = ax.transAxes.inverted()
    inv13 = fig.transFigure.inverted()

    point21 = inv11.transform((x, y))  # 显示坐标变换为Data坐标
    point22 = inv12.transform((x, y))  # 显示坐标变换为Axes坐标
    point23 = inv13.transform((x, y))  # 显示坐标变换为Figure坐标

    pixel11 = ax.transData.transform(point21)     # Data坐标变换为显示坐标系
    pixel12 = ax.transAxes.transform(point22)     # Axes坐标变换为显示坐标系
    pixel13 = fig.transFigure.transform(point23)  # Figure坐标变换为显示坐标系

    print('==>Data,Axes,Figure={};pixel={};time={}'.format(
        (point21, point22, point23), (pixel11, pixel12, pixel13),time.ctime()))

#-------------------------------
#绘图
fig = plt.figure(figsize=(6.4,4.8),dpi=100)
ax = fig.add_subplot(111)
plt.scatter(x,y,s=30,c='r',alpha=0.5,marker='x')

ax.set_xlim(0, 10)#Data坐标
ax.set_ylim(0, 10)#Data坐标

# 在画好的图上加字:
ax.text(2,2,'label0')                               # 数据坐标
ax.text(320,240,'label1',transform=None)            # 显示坐标像素
ax.text(0.2,0.8,'label2',transform=ax.transAxes)    # Axes坐标0-1
ax.text(0.2,0.8,'label3',transform=fig.transFigure) # Figure坐标0-1
ax.text(2,4,'label4',transform=ax.transData)
#-------------------------------

#鼠标事件:单击显示坐标轴数字
def onclick(event):
    # fx=event.xdata if event.xdata else 0
    # fy=event.ydata if event.xdata else 0
    # print('%s click: button=%d, x=%d, y=%d, xdata=%f, ydata=%f' %
    #       ('double' if event.dblclick else 'single', event.button,
    #        event.x, event.y, fx, fy))
    global XY
    XY= [1, event.x, event.y].copy()

    while XY[0]:#阻塞,等待数据处理完成即打印显示
        pass

cid = fig.canvas.mpl_connect('button_press_event', onclick)
#-------------------------------
#多线程
def run(fig, ax, xy):
    global XY
    t1=0
    while 1:

        if  XY[0]:
            coordinate_change(fig, ax, XY)
            XY[0]=0

thread1 = Thread(target=run, args=(fig, ax,XY),name='Thread-A')
thread1.start()
#-------------------------------

plt.show()#
#===================================================================
'''
结果打印显示:
==>Data,Axes,Figure=(array([3.58870968, 7.60822511]), 
                     array([0.35887097, 0.76082251]), 
                     array([0.403125  , 0.69583333]));
            pixel=(array([258., 334.]), array([258., 334.]), array([258., 334.]));
            time=Mon Oct 29 13:38:54 2018
'''
# ===================================================================

 

 

python matplotlib坐标变换 tcy shanghai

==============

2.2.实例2
# 混合坐标
import numpy
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 坐标轴负数的负号显示

# ======================================
#直线
def func1(x):
    return 0.4*x+1.3
#曲线
def func2(x):
    return 0.6*x*x+0.1*x+0.2
#交点横坐标
def find_intersects(x,y1,y2):
    d=y1-y2
    idx=numpy.where(d[:-1]*d[1:]<=0)[0]
    x1,x2=x[idx],x[idx+1]
    d1,d2=d[idx],d[idx+1]
    return -d1*(x2-x1)/(d2-d1)+x1

# =======================================
#绘图
x=numpy.linspace(-3,3,100)
f1=func1(x)
f2=func2(x)

fig,ax=plt.subplots(figsize=(6,4))
ax.plot(x,func1(x),x,func2(x))

#找到交点横坐标,将交点用圆圈表示
x1,x2=find_intersects(x,f1,f2)
ax.plot(x1,func1(x1),'o')
ax.plot(x2,func2(x2),'o')

#直线>曲线部分的面积填充
ax.fill_between(x,f1,f2,where=f1>f2,color='g',alpha=0.5)
# ======================================

#将一个以数据横坐标为宽,子图高度为高的矩形,用颜色填充
#transforms的blended_transform_factory函数可创建一个混合坐标(数据坐标,子图坐标)
from matplotlib import transforms
trans=transforms.blended_transform_factory(ax.transData,ax.transAxes)
ax.fill_between([x1,x2],0,1,transform=trans,alpha=0.1)
# ======================================

#子图注释
a=ax.text(0.05,0.95,'直线二次曲线交点',transform=ax.transAxes,
          va='top',fontsize=18,
          bbox={'color':'r','alpha':0.4,})
# ======================================

#箭头注释
#data表示使用的是数据坐标系中的坐标变换对象
#axes fraction表示使用的是子图坐标系的坐标变换对象
#offset points表示文字与箭头的相对位置保持不变
#arrowprops为描述箭头样式的字典
arrow={'arrowstyle':'fancy,tail_width=0.6','color':'gray'}
ax.annotate('交点',xy=(x1,func1(x1)),xycoords='data',xytext=(0.4,0.5),
            textcoords='axes fraction',arrowprops=arrow)
ax.annotate('交点',xy=(x2,func2(x2)),xycoords='data',xytext=(0.4,0.5),
            textcoords='axes fraction',arrowprops=arrow)

xm=(x1+x2)/2
ym=(func1(xm)-func2(xm))/2+func2(xm)
ax.annotate('直线大于曲线区域',xy=(xm,ym),xycoords='data',xytext=(30,-30),
            textcoords='offset points',arrowprops=arrow,
            bbox={'color':'g','alpha':0.4,}
            )
plt.show()
# ===============================================================

===

python matplotlib坐标变换 tcy shanghai