64.剑指Offer-n 个骰子的点数
题目描述
把 n 个骰子仍在地上,求点数和为 s 的概率。
扔 n 个骰子,向上面的数字之和为 S。给定 n,请列出所有可能的 S 值及其相应的概率。
样例 1:
输入:n = 1
输出:[[1, 0.17], [2, 0.17], [3, 0.17], [4, 0.17], [5, 0.17], [6, 0.17]]
解释:掷一次骰子,向上的数字和可能为1,2,3,4,5,6,出现的概率均为 0.17。
样例 2:
输入:n = 2
输出:[[2,0.03],[3,0.06],[4,0.08],[5,0.11],[6,0.14],[7,0.17],[8,0.14],[9,0.11],[10,0.08],[11,0.06],[12,0.03]]
解释:掷两次骰子,向上的数字和可能在[2,12],出现的概率是不同的。
解题思路
动态规划解法
使用一个二维数组 dp 存储点数出现的次数,其中 dp[i][j] 表示前 i 个骰子产生点数 j 的次数。
空间复杂度:O(N2)
public List<Map.Entry<Integer, Double>> dicesSum(int n) {
final int face = 6;
final int pointNum = face * n;
long[][] dp = new long[n + 1][pointNum + 1];
for (int i = 1; i <= face; i++)
dp[1][i] = 1;
for (int i = 2; i <= n; i++)
for (int j = i; j <= pointNum; j++) /* 使用 i 个骰子最小点数为 i */
for (int k = 1; k <= face && k <= j; k++) //第n个色子的6种情况
dp[i][j] += dp[i - 1][j - k];
final double totalNum = Math.pow(6, n);
List<Map.Entry<Integer, Double>> ret = new ArrayList<>();
for (int i = n; i <= pointNum; i++)
ret.add(new AbstractMap.SimpleEntry<>(i, dp[n][i] / totalNum));
return ret;
}
dp[n][j] n表示的是有几个色子,j是n个色子的时候能有多少种组合。dp[n][j]表示n个色子的时候,有多少种情况能组合成
map.entrySet返回的是一个(key,value)集合。dp[3][4] 表示3个色子的时候,和为4的有多少组合。=dp[2][3]、dp[2][2]、dp[2][1]
前两个色子和为3,第三个色子为1,。前两个色子和为2,第三个色子为2。dp[2][1]、dp[2][0]默认都是0.
System.out.println("通过Map.entrySet遍历key和value");
for (Map.Entry<String, String> entry : map.entrySet()) {
System.out.println("key= " + entry.getKey() + " and value= " + entry.getValue());
}
动态规划解法 + 旋转数组
空间复杂度:O(N)
public List<Map.Entry<Integer, Double>> dicesSum(int n) {
final int face = 6;
final int pointNum = face * n;
long[][] dp = new long[2][pointNum + 1];
for (int i = 1; i <= face; i++)
dp[0][i] = 1;
int flag = 1; /* 旋转标记 */
for (int i = 2; i <= n; i++, flag = 1 - flag) {
for (int j = 0; j <= pointNum; j++)
dp[flag][j] = 0; /* 旋转数组清零 */
for (int j = i; j <= pointNum; j++)
for (int k = 1; k <= face && k <= j; k++)
dp[flag][j] += dp[1 - flag][j - k];
}
final double totalNum = Math.pow(6, n);
List<Map.Entry<Integer, Double>> ret = new ArrayList<>();
for (int i = n; i <= pointNum; i++)
ret.add(new AbstractMap.SimpleEntry<>(i, dp[1 - flag][i] / totalNum));
return ret;
}