Redis相关问题

Redis持久化
Redis 提供了两种数据持久化的方式,一种是 RDB,另一种是 AOF。默认情况下,Redis 使用的是 RDB 持久化。
RDB持久化文件体积较小,但是保存数据的频率一般较低,可靠性差,容易丢失数据。另外RDB写数据时会采用Fork函数拷贝主进程,可能有额外的内存消耗,文件压缩也会有额外的CPU消耗。
AOF持久化可以做到每秒钟持久化一次,可靠性高。但是持久化文件体积较大,导致数据恢复时读取文件时间较长,效率略低。

Redis集群
Redis集群可以分为主从集群分片集群两类。

主从集群一般一主多从,主库用来写数据,从库用来读数据。结合哨兵,可以再主库宕机时从新选主,目的是保证Redis的高可用

分片集群是数据分片,我们会让多个Redis节点组成集群,并将16383个插槽分到不同的节点上。存储数据时利用对key做hash运算,得到插槽值后存储到对应的节点即可。因为存储数据面向的是插槽而非节点本身,因此可以做到集群动态伸缩。目的是让Redis能存储更多数据。

1)主从集群

主从集群,也是读写分离集群。一般都是一主多从方式。

Redis 的复制(replication)功能允许用户根据一个 Redis 服务器来创建任意多个该服务器的复制品,其中被复制的服务器为主服务器(master),而通过复制创建出来的服务器复制品则为从服务器(slave)。

只要主从服务器之间的网络连接正常,主从服务器两者会具有相同的数据,主服务器就会一直将发生在自己身上的数据更新同步 给从服务器,从而一直保证主从服务器的数据相同。

  • 写数据时只能通过主节点完成
  • 读数据可以从任何节点完成
  • 如果配置了哨兵节点,当master宕机时,哨兵会从salve节点选出一个新的主。

主从集群分两种:Redis相关问题
带有哨兵的集群:
Redis相关问题
2)分片集群

主从集群中,每个节点都要保存所有信息,容易形成木桶效应。并且当数据量较大时,单个机器无法满足需求。此时我们就要使用分片集群了。

Redis相关问题
集群特征:

  • 每个节点都保存不同数据

  • 所有的redis节点彼此互联(PING-PONG机制),内部使用二进制协议优化传输速度和带宽.

  • 节点的fail是通过集群中超过半数的节点检测失效时才生效.

  • 客户端与redis节点直连,不需要中间proxy层连接集群中任何一个可用节点都可以访问到数据

  • redis-cluster把所有的物理节点映射到[0-16383]slot(插槽)上,实现动态伸缩

为了保证Redis中每个节点的高可用,我们还可以给每个节点创建replication(slave节点),如图:

Redis相关问题
出现故障时,主从可以及时切换:
Redis相关问题

Redis的常用数据类型有哪些?
支持多种类型的数据结构,主要区别是value存储的数据格式不同:
string:最基本的数据类型,二进制安全的字符串,最大512M。
list:按照添加顺序保持顺序的字符串列表。
set:无序的字符串集合,不存在重复的元素。
sorted set:已排序的字符串集合。
hash:key-value对格式。

Redis事务
Redis事务其实是把一系列Redis命令放入队列,然后批量执行,执行过程中不会有其它事务来打断。不过与关系型数据库的事务不同,Redis事务不支持回滚操作,事务中某个命令执行失败,其它命令依然会执行。
为了弥补不能回滚的问题,Redis会在事务入队时就检查命令,如果命令异常则会放弃整个事务。
因此,只要程序员编程是正确的,理论上说Redis会正确执行所有事务,无需回滚。

如果事务执行一半的时候Redis宕机怎么办?
Redis有持久化机制,因为可靠性问题,我们一般使用AOF持久化。事务的所有命令也会写入AOF文件,但是如果在执行EXEC命令之前,Redis已经宕机,则AOF文件中事务不完整。使用 redis-check-aof 程序可以移除 AOF 文件中不完整事务的信息,确保服务器可以顺利启动。

Redis过期策略
Redis过期策略包含定期删除和惰性删除两部分。定期删除是在Redis内部有一个定时任务,会定期删除一些过期的key。惰性删除是当用户查询某个Key时,会检查这个Key是否已经过期,如果没过期则返回用户,如果过期则删除。
但是这两个策略都无法保证过期key一定删除,漏网之鱼越来越多,还可能导致内存溢出。当发生内存不足问题时,Redis还会做内存回收。内存回收采用LRU策略,就是最近最少使用。其原理就是记录每个Key的最近使用时间,内存回收时,随机抽取一些Key,比较其使用时间,把最老的几个删除。
Redis的逻辑是:最近使用过的,很可能再次被使用

Redis在项目中的哪些地方有用到?
(1)共享session
在分布式系统下,服务会部署在不同的tomcat,因此多个tomcat的session无法共享,以前存储在session中的数据无法实现共享,可以用redis代替session,解决分布式系统间数据共享问题。
(2)数据缓存
Redis采用内存存储,读写效率较高。我们可以把数据库的访问频率高的热点数据存储到redis中,这样用户请求时优先从redis中读取,减少数据库压力,提高并发能力。
(3)异步队列
Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。而且Redis中还有pub/sub这样的专用结构,用于1对N的消息通信模式。
(4)分布式锁
Redis中的乐观锁机制,可以帮助我们实现分布式锁的效果,用于解决分布式系统下的多线程安全问题

Redis实现分布式锁
分布式锁要满足的条件:
多进程互斥:同一时刻,只有一个进程可以获取锁
保证锁可以释放:任务结束或出现异常,锁一定要释放,避免死锁
阻塞锁(可选):获取锁失败时可否重试
重入锁(可选):获取锁的代码递归调用时,依然可以获取锁

缓存穿透及解决方案
缓存穿透有两种解决方案:其一是把不存在的key设置null值到缓存中。其二是使用布隆过滤器,在查询缓存前先通过布隆过滤器判断key是否存在,存在再去查询缓存。
设置null值可能被恶意针对,攻击者使用大量不存在的不重复key ,那么方案一就会缓存大量不存在key数据。此时我们还可以对Key规定格式模板,然后对不存在的key做正则规范匹配,如果完全不符合就不用存null值到redis,而是直接返回错误。

缓存击穿及解决方案
缓存击穿主要担心的是某个Key过期,更新缓存时引起对数据库的突发高并发访问。因此我们可以在更新缓存时采用互斥锁控制,只允许一个线程去更新缓存,其它线程等待并重新读取缓存。例如Redis的setnx命令就能实现互斥效果。

缓存雪崩及解决方案
解决缓存雪崩问题的关键是让缓存Key的过期时间分散。因此我们可以把数据按照业务分类,然后设置不同过期时间。相同业务类型的key,设置固定时长加随机数。尽可能保证每个Key的过期时间都不相同。
另外,Redis宕机也可能导致缓存雪崩,因此我们还要搭建Redis主从集群及哨兵监控,保证Redis的高可用。