Android版手机QQ的缓存监控与优化实践
腾讯技术分享:Android版手机QQ的缓存监控与优化实践
本文内容整理自公众号腾讯Bugly,感谢原作者的分享。 1、问题背景对于Android应用来说,内存向来是比较重要的性能指标。内存占用过高,会影响应用的流畅度,甚至引发OOM,非常影响用户体验。因此,内存优化也向来是行业内的重点工作项和难点工作项。 手Q在很早之前就开发了很多内存优化技术:
以上这些技术都取得了很好的内存优化效果,但他们的特点是:主要针对明显的内存问题,缺少更深入的内存分析。 因此,手Q内存问题也一直存在,主要表现在以下两方面:
这次我们主要从监控和清理两个角度出发,系统化的进一步优化手Q内存:
通过监控和清理相互配合,我们最终实现了优化手Q整体内存,降低OOM率的效果。以下是详细方案。 2、相关文章《腾讯技术分享:Android手Q的线程死锁监控系统技术实践》 《微信团队原创分享:iOS版微信的内存监控系统技术实践》 《微信团队原创分享:Android内存泄漏监控和优化技巧总结》 《QQ音乐团队分享:Android中的图片压缩技术详解(上篇)》 《QQ音乐团队分享:Android中的图片压缩技术详解(下篇)》 《Android版微信安装包“减肥”实战记录》 《iOS版微信安装包“减肥”实战记录》 《微信客户端团队负责人技术访谈:如何着手客户端性能监控和优化》 3、统一缓存监控统一缓存监控主要包含图片缓存监控和业务对象缓存监控两部分:
3.1图片缓存监控对于Android应用来说,Bitmap向来是内存的占用大户。在手Q中平均有300+ Bitmap对象。 统计显示:Bitmap引用内存占手Q总内存40%左右: 减少图片占用内存,需要规范图片缓存的使用。前期我们在手Q中封装实现了图片专用多级缓存QQLruChe,并要求各业务必须使用全局图片专用缓存来缓存图片。一方面可以方便调控图片缓存业务,另一方面,通过淘汰以及清理策略,可以有效控制图片缓存大小。但由于手Q业务众多,业务独立开辟图片缓存的情况还是时有发生。因此我们开发了一套图片缓存监控系统,及时检测出图片缓存私藏问题,同时也监控图片的其他不合理使用。 图片缓存监控使用内存快照技术实现,分为终端数据采集和后台数据分析两部分。 流程如下所示: 终端数据采集:客户端实时检测当前可用内存,当可用内存不足时,自动生成内存快照文件,上报到后台。 后台数据分析:在后台,我们实现了一套Hprof文件分析以及Bitmap引用归并技术,批量分析内存快照文件,输出Bitmap引用链并进行归类统计,过滤全局图片专用缓存以及View层引用后,分析出存在图片缓存私藏的业务。 实现图片缓存监控过程中我们主要遇到以下几个难点:
通过图片监控系统,我们有效检测出以下几类业务问题:
在手Q730版本,图片缓存监控系统检测出32例业务问题,提单26例,累计节省内存约23M。 3.2业务对象缓存监控业务对象缓存监控主要是通过实现自定义集合类,实时上报各业务内存缓存使用情况到后台。在后台分析归并,从而定位业务缓存问题。 如上图所示,业务对象缓存主要分为终端数据采集、后台数据分析、缓存清理三部分:
通过统一缓存监控,我们检测出了很多业务缓存问题,主要可归为以下三类。 1)缓存浪费率高:
针对这类问题,推动业务优化内存缓存结构,去除无用缓存,优化缓存方案,以降低浪费率。 2)缓存内存占用大:
针对这类问题,对于缓存图片的业务,推动业务接入全局图片专用缓存;对于非图片类业务,接入自动清理,及时释放内存空间。 3)缓存结构存在优化空间:
针对这类问题,推动业务更新或者优化缓存结构,增加上限控制等。 4、内存清理统一监控,可以有效发现业务缓存问题进行专项优化。但监控具有一定的滞后性,因此在监控的基础上,我们同时也增加了内存清理控制模块。 内存清理主要分为业务内存清理以及系统内存清理。业务内存清理,包含统一图片缓存清理,以及业务缓存对象清理两部分。这里前文已简单介绍。接下来我们介绍下两例系统相关的内存清理技术:系统ClassLoader内存清理和系统预加载图片清理。 4.1系统ClassLoader内存清理前期,我们分析了很多内存快照,发现一个共性的问题:在内存快照中有个ZipFile对象,内存占用一直超过2.6M。这个zipFile被系统类ClassLoader引用。 通过分析系统源码,我们发现ZipFile记录了安装包所有的类文件信息,手Q安装包中有超过15000个文件,文件越多,zipFile占用内存就越大。 我们进一步分析ClassLoader相关源码,发现只有在调用ClassLoader的findResource方法查找图片等安装包内资源时,才会使用到ZipFile的内容,未发现其他使用场景。同时,通过findResource方式查找资源存在一定的弊端:耗时很长,在Android系统上不推荐使用。 详情分析可参考: http://blog.nimbledroid.com/2016/04/06/slow-ClassLoader.getResourceAsStream-zh.html 综合评估,可以清理ClassLoader引用的这块内存。 清理主要面临以下几个难点:
下图是我们清理系统ClassLoader的实现方案,采用代理,兜底,缓存,上报等手段逐一攻克以上难点,完美实现清理系统ClassLoader内存的效果。 1)针对兼容性问题,我们通过反射代理替换了系统的ZipFile为HookZipFile,替换完成后,清理掉zipFile内存。替换机制兼容系统不同版本以及特殊机型,对系统逻辑无影响。 2)针对清理导致的功能异常,我们实现了兜底能力,下次访问时,会重新创建zipFile。 3)针对耗时问题,内部封装实现缓存功能。并针对业务访问增加堆栈上报,及时推动业务改用其他方式获取资源。 内存清理方案,通过内部兼容性测试,发布后外网无crash问题,通过不断迭代,兼容率达到100%。并且内存清理效果明显,平均清理内存量约2.6M。 4.2系统预加载图片清理系统预加载图片缓存是zygote进程初始化时,通过preloadResources()预加载的通用图片资源,后续android应用进程都是从Zygote fork出来的,所以就继承了这部分预加载的图片资源。由于是静态强引用,这部分图片资源会一直占用内存空间。 预加载的好处在于系统只在zygote执行一次加载操作,所有应用用到该资源不需要再重新加载,减少资源加载耗时。与此同时,sPreloadedDrawables属于静态对象,会一直引用图片缓存,所以该系统机制会占用较高内存,在有些系统上,内存占用空间超过20M。 因此这里存在内存优化的空间,当内存占用高时,可以主动清理掉这部分内存,以便释放可观的堆内存空间,减少内存耗尽的风险。通过分析drawable加载机制的源码,我们了解到如果预加载的资源没有在sPreloadedDrawables中找到,会重新decode解码加载,不会影响现有功能。 因此清理后的风险可控,主要面临的难点是兼容性问题:
下图是我们清理系统预加载图片缓存的实现方案,通过反射替换的方式,拦截替换系统的预加载缓存为自定义图片缓存,内部管理图片加载,在内存不足时,及时清理预加载图片缓存。 针对兼容性问题,我们实现了一套完备的兼容性方案:
系统预加载图片清理,通过不断迭代,已经可以兼容几乎所有机型。版本发布后,未引入系统功能异常以及外网crash问题。内存清理量比较可观:平均在15M左右,最高达到25M。 5、优化后的效果5.1横向对比在灰度阶段,我们对用户进行了ABTest测试,一半用户接入内存优化逻辑,一半用户不接入。大盘上报统计显示:优化用户OOM率明显低于未优化用户:OOM率由0.09%降至0.053%。 内存分布方面,内存优化显著降低了高内存用户占比。由3.05%降至1.7%。高内存用户是指当前可用内存不足20%的用户,是OOM高发用户群,降低这部分用户比例,可有效降低OOM率。 5.2纵向对比我们从7.3.0版本接入内存优化,从版本迭代来看,优化效果显著:OOM率由0.09%左右降低至0.047%左右,降幅47%: 手Q版本间平均内存增幅明显放缓,版本增幅由5.8M左右降至1.14M左右: 附录:更多微信、QQ的文章汇总[1] QQ、微信团队原创技术文章: 《腾讯技术分享:Android版手机QQ的缓存监控与优化实践》 《微信团队分享:iOS版微信的高性能通用key-value组件技术实践》 《微信团队分享:iOS版微信是如何防止特殊字符导致的炸群、APP崩溃的?》 《让互联网更快:新一代QUIC协议在腾讯的技术实践分享》 《iOS后台唤醒实战:微信收款到账语音提醒技术总结》 《腾讯技术分享:社交网络图片的带宽压缩技术演进之路》 《微信团队分享:视频图像的超分辨率技术原理和应用场景》 《微信团队分享:微信每日亿次实时音视频聊天背后的技术解密》 《腾讯团队分享:手机QQ中的人脸识别酷炫动画效果实现详解》 《腾讯团队分享 :一次手Q聊天界面中图片显示bug的追踪过程分享》 《微信团队分享:微信Android版小视频编码填过的那些坑》 《微信手机端的本地数据全文检索优化之路》 《企业微信客户端中组织架构数据的同步更新方案优化实战》 《微信团队披露:微信界面卡死超级bug“15。。。。”的来龙去脉》 《QQ 18年:解密8亿月活的QQ后台服务接口隔离技术》 《月活8.89亿的超级IM微信是如何进行Android端兼容测试的》 《以手机QQ为例探讨移动端IM中的“轻应用”》 《一篇文章get微信开源移动端数据库组件WCDB的一切!》 《微信客户端团队负责人技术访谈:如何着手客户端性能监控和优化》 《微信后台基于时间序的海量数据冷热分级架构设计实践》 《微信团队原创分享:Android版微信的臃肿之困与模块化实践之路》 《微信后台团队:微信后台异步消息队列的优化升级实践分享》 《微信团队原创分享:微信客户端SQLite数据库损坏修复实践》 《腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率》 《腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(下篇)》 《腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(上篇)》 《微信Mars:微信内部正在使用的网络层封装库,即将开源》 《如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源》 《开源libco库:单机千万连接、支撑微信8亿用户的后台框架基石 [源码下载]》 《微信新一代通信安全解决方案:基于TLS1.3的MMTLS详解》 《微信团队原创分享:Android版微信后台保活实战分享(进程保活篇)》 《微信团队原创分享:Android版微信后台保活实战分享(网络保活篇)》 《Android版微信从300KB到30MB的技术演进(PPT讲稿) [附件下载]》 《微信团队原创分享:Android版微信从300KB到30MB的技术演进》 《微信技术总监谈架构:微信之道——大道至简(演讲全文)》 《微信技术总监谈架构:微信之道——大道至简(PPT讲稿) [附件下载]》 《如何解读《微信技术总监谈架构:微信之道——大道至简》》 《微信海量用户背后的后台系统存储架构(视频+PPT) [附件下载]》 《微信异步化改造实践:8亿月活、单机千万连接背后的后台解决方案》 《微信朋友圈海量技术之道PPT [附件下载]》 《微信对网络影响的技术试验及分析(论文全文)》 《一份微信后台技术架构的总结性笔记》 《架构之道:3个程序员成就微信朋友圈日均10亿发布量[有视频]》 《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》 《快速裂变:见证微信强大后台架构从0到1的演进历程(二)》 《全面总结iOS版微信升级iOS9遇到的各种“坑”》 《微信团队原创资源混淆工具:让你的APK立减1M》 《微信团队原创Android资源混淆工具:AndResGuard [有源码]》 《移动端IM实践:iOS版微信界面卡顿监测方案》 《微信“红包照片”背后的技术难题》 《移动端IM实践:iOS版微信小视频功能技术方案实录》 《移动端IM实践:Android版微信如何大幅提升交互性能(一)》 《移动端IM实践:Android版微信如何大幅提升交互性能(二)》 《移动端IM实践:实现Android版微信的智能心跳机制》 《移动端IM实践:WhatsApp、Line、微信的心跳策略分析》 《移动端IM实践:谷歌消息推送服务(GCM)研究(来自微信)》 《移动端IM实践:iOS版微信的多设备字体适配方案探讨》 《信鸽团队原创:一起走过 iOS10 上消息推送(APNS)的坑》 《腾讯信鸽技术分享:百亿级实时消息推送的实战经验》 >> 更多同类文章 …… [2] 有关QQ、微信的技术故事: 《技术往事:微信估值已超5千亿,雷军曾有机会收编张小龙及其Foxmail》 《QQ和微信凶猛成长的背后:腾讯网络基础架构的这些年》 《闲话即时通讯:腾讯的成长史本质就是一部QQ成长史》 《2017微信数据报告:日活跃用户达9亿、日发消息380亿条》 《腾讯开发微信花了多少钱?技术难度真这么大?难在哪?》 《技术往事:创业初期的腾讯——16年前的冬天,谁动了马化腾的代码》 《技术往事:史上最全QQ图标变迁过程,追寻IM巨人的演进历史》 《技术往事:“QQ群”和“微信红包”是怎么来的?》 《开发往事:深度讲述2010到2015,微信一路风雨的背后》 《开发往事:微信千年不变的那张闪屏图片的由来》 《开发往事:记录微信3.0版背后的故事(距微信1.0发布9个月时)》 《一个微信实习生自述:我眼中的微信开发团队》 《首次揭秘:QQ实时视频聊天背后的神秘组织》 >> 更多同类文章 …… |