【源码】基于非线性Newmark方法的隐式动态求解器
求解函数
function Result=Newmark_Nonlinear(Elements,Material,Support,Free,M,C,f,fs,delta)
Input
Elements: a structure containing Elements{i}.DOFs and Elements{i}.Material
where Elements{i}.DOFs=[j k] means element i connect DOF j with k
and Elements{i}.Material=m assign material m to element i
Material: a structure containing material properties for bilinear springs
where Material{m}.k1 is Spring stiffness
Material{m}.x1 is Spring deformation beyond which the stiffness decreases
Material{m}.k2 is Reduced stiffness
Support: a vector of support (Fixed) DOFs of size (nSupport,1)
Free: a vector of free DOFs of size (nFree,1)
M:mass matrix (nFree*nFree)
C:damping matrix (nFree*nFree)
f:external force matrix(nFree,N)
fs: sampling frequency
delta: convergance criterion for residual force
where N is the length of data points of dynamic force
Output:
Result: is a structure consist of
Result.Displacement: Displacement (nFree*N)
Result.Velocity: Velocity (nFree*N)
Result.Acceleration: Acceleration (nFree*N)
注:假定元件为连接具有双线性刚度(无滞后)节点的弹簧。
Note: Elements are assumed to be springs connecting nodes with bi-linear stiffness (No hysteresis).
参考文献
References
Chopra, Anil K. “Dynamics of Structures. Theory and Applications to.” Earthquake Engineering (2017).
更多精彩文章请关注公众号: