logistics笔记
均参考自这个文章
logistics回归是一种二分类算法,下面将原理、实现过程和使用记录下来方便自己日后复习
二分类问题线性可分的情况一般是图中这样,这种的预测函数就应该是w1*x1+w2* x2+b 如果结果大于0就在线上面,如果结果小于0就在这条线下面。
再用sigmod函数g(z):
函数形状:
处理得到0-1之间的数,得到的结果代表y=1的概率
由此有了logistics回归的预测函数hypothesis h(x),h(x)=g(b+w1*x1+w2*x2+…wn*xn)
书面形式如下:theta就是w,theta不好写,w和theta代表意思相同
所以y=1的概率p(y=1|x;theta)=h(x)
y=0的概率p(y=0|x;theta)=1-h(x)
下面构造损失函数。
由上面两个概率有:
似然函数是:
取对数:
让l(theta)最大即可,在课程中:
所以让j最小取到的参数是最好的。
这也就是损失函数。
接下来再对J求导求梯度
所以最终的θ更新过程为:
因为式中α本来为一常量,所以一般将1/m省略。