C++多态相关整理
一、C++多态的实现原理
多态性是一个接口多种实现,是面向对象的核心。分为静态多态和动态多态。静态多态是指通过模板技术或者函数重载技术实现的多态,其在编译器确定行为。动态多态是指通过虚函数技术实现在运行期动态绑定的技术。
1)静态多态
静态多态是通过重载和模板技术实现,在编译的时候确定。函数重载技术利用参数的不同确定调用关系,函数模版技术利用类型的不同生成不同的执行代码,都体现了静态多样性。
2)动态多态性
动态多态通过虚函数和继承关系来实现,执行动态绑定,在运行的时候确定。其中动态关联也叫做延迟绑定(late binding)或滞后关联。
动态多态实现有几个条件:
(1) 虚函数;
(2) 一个基类的指针或引用指向派生类的对象;
* 动态绑定的实现:
基类指针在调用成员函数(虚函数)时,就会去查找该对象的虚函数表。虚函数表的地址在每个对象的首地址。查找该虚函数表中该函数的指针进行调用。
每个对象中保存的只是一个虚函数表的指针,C++内部为每一个类维持一个虚函数表,该类的对象的都指向这同一个虚函数表。
虚函数表中为什么就能准确查找相应的函数指针呢?因为在类设计的时候,虚函数表直接从基类也继承过来,如果覆盖了其中的某个虚函数,那么虚函数表的指针就会被替换,因此可以根据指针准确找到该调用哪个函数。
(1)类的多态性
在基类的函数前加上virtual关键字,在派生类中重写该函数,当C++编译器在编译的时候就会采用迟绑定技术,即编译时并不确定具体调用的函数,运行时将会根据对象的实际类型来调用相应的函数。如果对象类型是派生类,就调用派生类的函数;如果对象类型是基类,就调用基类的函数。(如果不是虚函数,则C++编译器在编译时就确定了哪个函数被调用,这叫做早期绑定(early binding)。
(2)虚函数
用virtual关键字声明的函数叫做虚函数,虚函数肯定是类的成员函数。
1. 存在虚函数的类都有一个一维的虚函数表叫做虚表。类的对象有一个指向虚表开始的虚指针。虚表是和类对应的,虚表指针是和对象对应的。
2. 虚表可以继承,如果子类没有重写虚函数,子类虚表中仍然会有该函数的地址,只不过这个地址指向的是基类的虚函数实现。如果基类有3个虚函数,那么基类的虚表中就有三项(虚函数地址),派生类也会有虚表(至少有三项),如果重写了相应的虚函数,那么虚表中的地址就会改变,指向自身的虚函数实现。如果派生类有自己的虚函数,那么虚表中就会添加该项。
3. 派生类的虚表中虚函数地址的排列顺序和基类的虚表中虚函数地址排列顺序相同。
(3)虚函数的作用:
1.虚函数用于实现多态。涉及到多态性的时候,采用了虚函数和动态绑定,此时的调用就不会在编译时候确定而是在运行时确定。不再单独考虑指针/引用的类型而是看指针/引用的对象的类型来判断函数的调用,根据对象中虚指针指向的虚表中的函数的地址来确定调用哪个函数。
2.虚函数在设计上还具有封装和抽象的作用。比如抽象工厂模式。
(4)虚函数表
Q1:虚函数表是针对类的还是针对对象的?同一个类的两个对象的虚函数表是怎么维护的?
解:编译器为每一个类维护一个虚函数表,每个对象的首地址保存着该虚函数表的指针,同一个类的不同对象实际上指向同一张虚函数表。
Q2:画一下虚指针与虚函数表,如果多继承,虚函数表怎么画?
包含虚函数的类才会有虚函数表, 同属于一个类的对象共享虚函数表, 但是有各自的_vptr.虚函数表实质是一个指针数组,里面存的是虚函数的函数指针。
Base中虚函数表结构:
Derive中虚函数表结构:
多继承
(5)纯虚函数
纯虚函数是虚函数再加上= 0。抽象类是指包括至少一个纯虚函数的类。纯虚函数:virtual void breathe()=0;即抽象类,注:必须在子类实现这个函数!即先有名称,没内容,在派生类实现内容!
例1-0:
定义一个基类:class Animal//动物。它的函数为breathe()//呼吸。
再定义一个类class Fish//鱼 。它的函数也为breathe()
再定义一个类class Sheep //羊。它的函数也为breathe()
为了简化代码,将Fish,Sheep定义成基类Animal的派生类。
然而Fish与Sheep的breathe不一样,一个是在水中通过水来呼吸,一个是直接呼吸空气。所以基类不能确定该如何定义breathe,所以在基类中只定义了一个virtual breathe,它是一个空的虚函数。具体的函数在子类中分别定义。程序运行时,找到类,如果它有基类,再找它的基类,最后运行的是基类中的函数,这时,它在基类中找到的是virtual标识的函数,它就会再回到子类中找同名函数(派生类也叫子类。基类也叫父类)。这就是虚函数的产生,和类的多态性(breathe)的体现。
(6)为什么对于存在虚函数的类中析构函数要定义成虚函数
为了实现多态进行动态绑定,将派生类对象指针绑定到基类指针上,对象销毁时,如果析构函数没有定义为析构函数,则会调用基类的析构函数,显然只能销毁部分数据。如果要调用对象的析构函数,就需要将该对象的析构函数定义为虚函数,销毁时通过虚函数表找到对应的析构函数。virtual ~myClass() = 0;//纯虚函数定义
通过基类的指针来删除派生类的对象时,基类的析构函数应该是虚的。否则其删除效果将无法实现。
一般情况下,这样的删除只能够删除基类对象,而不能删除子类对象,形成了删除一半形象,从而千万内存泄漏。
原因:
在公有继承中,基类对派生类及其对象的操作,只能影响到那些从基类继承下来的成员。如果想要用基类对非继承成员进行操作,则要把基类的这个操作(函数)定义为虚函数。
那么,析构函数自然也应该如此:如果它想析构子类中的重新定义或新的成员及对象,当然也应该声明为虚的。
注意:
如果不需要基类对派生类及对象进行操作,则不能定义虚函数(包括虚析构函数),因为这样会增加内存开销。
(7)构造函数和析构函数中调用虚函数吗?
(8)虚指针是对象成员变量么?在什么时候初始化?
类的虚函数调用是通过虚函数表实现的。所谓虚函数表,是编译器自动为一个带有虚函数的类生成的一块内存空间,其中存储着每一个虚函数的入口地址。由于函数的入口地址可以看成一个指针类型,因此这些虚函数的地址间隔为四个字节。而每一个带有虚函数类的实例,都拥有一个虚函数指针——vptr,在类的对象初始化完毕后,它将指向虚函数表。
这个vptr指针将位于类对象的首部,即作为第一个成员变量,处于类对象代表的内存块的前四个字节中。为了便于理解和复习,在此将其内存结构以图示之。
vptr在自身构造函数体之前初始化。
typedef void(*Func)(void)的简单用途
C++vptr初始化时间
例1-1:
- #include <iostream.h>
- class animal
- {
- public:
- void sleep()
- {
- cout<<"animal sleep"<<endl;
- }
- void breathe()
- {
- cout<<"animal breathe"<<endl;
- }
- };
- class fish:public animal
- {
- public:
- void breathe()
- {
- cout<<"fish bubble"<<endl;
- }
- };
- void main()
- {
- fish fh;
- animal *pAn=&fh; // 隐式类型转换
- pAn->breathe();
- }
注意:在例1-1的程序中没有定义虚函数。考虑一下例1-1的程序执行的结果是什么?
答案是输出:animal breathe
我们在main()函数中首先定义了一个fish类的对象fh,接着定义了一个指向animal类的指针变量pAn,将fh的地址赋给了指针变量pAn,然后利用该变量调用pAn->breathe()。许多学员往往将这种情况和C++的多态性搞混淆,认为fh实际上是fish类的对象,应该是调用fish类的breathe(),输出“fish bubble”,然后结果却不是这样。下面我们从两个方面来讲述原因。
1、 编译的角度
C++编译器在编译的时候,要确定每个对象调用的函数(要求此函数是非虚函数)的地址,这称为早期绑定(early binding),当我们将fish类的对象fh的地址赋给pAn时,C++编译器进行了类型转换,此时C++编译器认为变量pAn保存的就是animal对象的地址。当在main()函数中执行pAn->breathe()时,调用的当然就是animal对象的breathe函数。
2、 内存模型的角度
我们给出了fish对象内存模型,如下图所示:
我们构造fish类的对象时,首先要调用animal类的构造函数去构造animal类的对象,然后才调用fish类的构造函数完成自身部分的构造,从而拼接出一个完整的fish对象。当我们将fish类的对象转换为animal类型时,该对象就被认为是原对象整个内存模型的上半部分,也就是图1-1中的“animal的对象所占内存”。那么当我们利用类型转换后的对象指针去调用它的方法时,当然也就是调用它所在的内存中的方法。因此,输出animal breathe,也就顺理成章了。
正如很多学员所想,在例1-1的程序中,我们知道pAn实际指向的是fish类的对象,我们希望输出的结果是鱼的呼吸方法,即调用fish类的breathe方法。这个时候,就该轮到虚函数登场了。
前面输出的结果是因为编译器在编译的时候,就已经确定了对象调用的函数的地址,要解决这个问题就要使用迟绑定(late binding)技术。当编译器使用迟绑定时,就会在运行时再去确定对象的类型以及正确的调用函数。而要让编译器采用迟绑定,就要在基类中声明函数时使用virtual关键字(注意,这是必须的,很多学员就是因为没有使用虚函数而写出很多错误的例子),这样的函数我们称为虚函数。一旦某个函数在基类中声明为virtual,那么在所有的派生类中该函数都是virtual,而不需要再显式地声明为virtual。
下面修改例1-1的代码,将animal类中的breathe()函数声明为virtual,如下:
- #include <iostream.h>
- class animal
- {
- public:
- void sleep()
- {
- cout<<"animal sleep"<<endl;
- }
- virtual void breathe()
- {
- cout<<"animal breathe"<<endl;
- }
- };
- class fish:public animal
- {
- public:
- void breathe()
- {
- cout<<"fish bubble"<<endl;
- }
- };
- void main()
- {
- fish fh;
- animal *pAn=&fh; // 隐式类型转换
- pAn->breathe();
- }
大家可以再次运行这个程序,你会发现结果是“fish bubble”,也就是根据对象的类型调用了正确的函数。
那么当我们将breathe()声明为virtual时,在背后发生了什么呢?
编译器在编译的时候,发现animal类中有虚函数,此时编译器会为每个包含虚函数的类创建一个虚表(即vtable),该表是一个一维数组,在这个数组中存放每个虚函数的地址。对于例1-2的程序,animal和fish类都包含了一个虚函数breathe(),因此编译器会为这两个类都建立一个虚表,(即使子类里面没有virtual函数,但是其父类里面有,所以子类中也有了)如下图所示:
那么如何定位虚表呢?编译器另外还为每个类的对象提供了一个虚表指针(即vptr),这个指针指向了对象所属类的虚表。在程序运行时,根据对象的类型去初始化vptr,从而让vptr正确的指向所属类的虚表,从而在调用虚函数时,就能够找到正确的函数。对于例1-2的程序,由于pAn实际指向的对象类型是fish,因此vptr指向的fish类的vtable,当调用pAn->breathe()时,根据虚表中的函数地址找到的就是fish类的breathe()函数。
正是由于每个对象调用的虚函数都是通过虚表指针来索引的,也就决定了虚表指针的正确初始化是非常重要的。换句话说,在虚表指针没有正确初始化之前,我们不能够去调用虚函数。那么虚表指针在什么时候,或者说在什么地方初始化呢?
答案虚表指针是在构造函数中进行虚表的创建和虚表指针的初始化。
回忆构造函数的调用顺序:
1、在构造子类对象时,要先调用父类的构造函数,此时编译器只“看到了”父类,并不知道后面是否后还有继承者,它初始化父类对象的虚表指针,该虚表指针指向父类的虚表。
2、执行子类的构造函数时,此时子类对象的虚表指针被初始化,指向自身的虚表。对于例2-2的程序来说,当fish类的fh对象构造完毕后,其内部的虚表指针也就被初始化为指向fish类的虚表。在类型转换后,调用pAn->breathe(),由于pAn实际指向的是fish类的对象,该对象内部的虚表指针指向的是fish类的虚表,因此最终调用的是fish类的breathe()函数。
注意:对于虚函数调用来说,每一个对象内部都有一个虚表指针,该虚表指针被初始化为本类的虚表。所以在程序中,不管你的对象类型如何转换,但该对象内部的虚表指针是固定的,所以呢,才能实现动态的对象函数调用,这就是C++多态性实现的原理。
from: http://hi.baidu.com/1021161795/blog/item/0ea7ea2ce518af414fc226ce.html