普通递归关系

普通递归关系
题解:
就是转化为求数列第n向的表达式
注意:0 0的特判

纠结好久…哎

#include<algorithm>
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<map>
#include<iterator>
#include<queue>
#include<vector>
#include<string>
using namespace std;

typedef long long ll;
const int N=1e6+10;
const long long INF=1e18;
const double eps=0.0000001;

double quickPower(double a,int b){
    double ans=1.0,base=a;
    while(b>0){
        if(b&1)
            ans*=base;
        base*=base;
        b>>=1;
    }
    return ans;
}

int main()
{
   ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    int n;
    double a,b,x,y,f;//数据范围用double
    double p,q;
    cin>>x>>y>>a>>b>>n;
    f=a*a+4*b;
    if(x==0&&y==0)//特判0,0为特殊状态
    {
        if(n==0)
        {
            cout<<x<<endl;
            return 0;
        }
        else if(n==1)
        {
            cout<<y<<endl;
            return 0;
        }
        cout<<"0"<<endl;
        return 0;
    }
    double x1=(a-sqrt(f))/2.0;//求解一元二次方程
    double x2=(a+sqrt(f))/2.0;
    p=(x*x2-y)/(x2-x1);//求解二元一次方程
    q=(x*x1-y)/(x1-x2);
    int ans;
    double sum;
    sum=p*quickPower(x1,n)+q*quickPower(x2,n);//数列结论:p*x1^n+q*x2^n;
    ans=floor(sum+0.5);
    cout<<ans<<endl;
}