普通递归关系
题解:
就是转化为求数列第n向的表达式
注意:0 0的特判
纠结好久…哎
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<map>
#include<iterator>
#include<queue>
#include<vector>
#include<string>
using namespace std;
typedef long long ll;
const int N=1e6+10;
const long long INF=1e18;
const double eps=0.0000001;
double quickPower(double a,int b){
double ans=1.0,base=a;
while(b>0){
if(b&1)
ans*=base;
base*=base;
b>>=1;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
int n;
double a,b,x,y,f;//数据范围用double
double p,q;
cin>>x>>y>>a>>b>>n;
f=a*a+4*b;
if(x==0&&y==0)//特判0,0为特殊状态
{
if(n==0)
{
cout<<x<<endl;
return 0;
}
else if(n==1)
{
cout<<y<<endl;
return 0;
}
cout<<"0"<<endl;
return 0;
}
double x1=(a-sqrt(f))/2.0;//求解一元二次方程
double x2=(a+sqrt(f))/2.0;
p=(x*x2-y)/(x2-x1);//求解二元一次方程
q=(x*x1-y)/(x1-x2);
int ans;
double sum;
sum=p*quickPower(x1,n)+q*quickPower(x2,n);//数列结论:p*x1^n+q*x2^n;
ans=floor(sum+0.5);
cout<<ans<<endl;
}