获取特定时间范围内的数据库记录

问题描述:

让我们假设我有下表,称为video_data。我有另外一个videos,但它并不真正相关。我用它来查询特定频道的视频,但这不会改变查询。这只是为了获得一个通道的计算而不是全部。获取特定时间范围内的数据库记录

+----+----------+-------+---------------------+ 
| id | video_id | views |  created_at  | 
+----+----------+-------+---------------------+ 
| 1 |  1 | 1000 | 2016-04-26 00:00:00 | 
| 2 |  2 | 500 | 2016-04-26 00:00:01 | 
| 3 |  3 | 2500 | 2016-04-26 00:00:02 | 

| 4 |  1 | 1500 | 2016-04-26 02:00:00 | 
| 5 |  2 | 1000 | 2016-04-26 02:00:01 | 
| 6 |  3 | 3000 | 2016-04-26 02:00:02 | 

| 7 |  1 | 5000 | 2016-04-26 04:00:00 | 
| 8 |  2 | 10000 | 2016-04-26 04:00:01 | 
| 9 |  3 | 30000 | 2016-04-26 04:00:02 | 
+----+----------+-------+---------------------+ 

我现在想要做的是获得时间范围内视图的平均值。比方说,我想获得视频在2小时内的平均观看次数。以video_ 1为例

因此,我需要做的是以下几点。我需要得到id: 1id: 4的平均值。这将是1250,因为它是(1000 + 1500)/2。接下来我需要得到id: 4id: 7的平均值。这将是3250,因为它是(1500 + 5000)/2。现在,视频在两个小时内的平均分数将为2250,因为它是(1250 + 3250)/2,对吗?

现在我不知道,是如何从MySQL获得这个。它甚至可以在普通的MySQL中执行吗?我需要很多很多video_data。就像我有超过100个小时的数据!如果id: 100id: 105的数据相距不到两个小时,我仍然需要计算这些数据。

我想要做它在某种程度上是这样

select * 
from `video_data` 
where `video_id` in (select `id` from `videos` where `channel_id` = 1) 
    and TIMEDIFF(`created_at`, `created_at`) < '02:00:00' 

但这只是返回我的每一个结果,因为TIMEDIFF结果总是00:00:00

我这个

创建SQL Fiddle的MySQL 5.6架构设置

CREATE TABLE `video_data` (
    `id` int(10) unsigned NOT NULL AUTO_INCREMENT, 
    `video_id` int(10) unsigned NOT NULL, 
    `shares` int(11) DEFAULT NULL, 
    `likes` int(11) DEFAULT NULL, 
    `comments` int(11) DEFAULT NULL, 
    `total_count` int(11) DEFAULT NULL, 
    `created_at` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00', 
    `updated_at` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00', 
    PRIMARY KEY (`id`) 
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci; 

INSERT INTO `video_data` (`id`, `video_id`, `shares`, `likes`, `comments`, `total_count`, `created_at`, `updated_at`) 
VALUES 
    (1889612, 245721, 777, 69922, 1314, 72013, '2015-10-04 20:00:04', '2015-10-04 20:00:04'), 
    (1896986, 245721, 970, 90611, 1570, 93151, '2015-10-04 21:00:04', '2015-10-04 21:00:04'), 
    (1904145, 245721, 1121, 104636, 1725, 107482, '2015-10-04 22:00:05', '2015-10-04 22:00:05'), 
    (1911872, 245721, 1199, 115389, 1838, 118426, '2015-10-04 23:00:04', '2015-10-04 23:00:04'), 
    (1882621, 245007, 1651, 102569, 2659, 106879, '2015-10-04 19:00:06', '2015-10-04 19:00:06'), 
    (1889613, 245007, 1769, 113910, 2775, 118454, '2015-10-04 20:00:05', '2015-10-04 20:00:05'), 
    (1896988, 245007, 1829, 121646, 2851, 126326, '2015-10-04 21:00:05', '2015-10-04 21:00:05'), 
    (1904150, 245007, 1889, 127677, 2917, 132483, '2015-10-04 22:00:06', '2015-10-04 22:00:06'), 
    (1911877, 245007, 1914, 132764, 2957, 137635, '2015-10-04 23:00:05', '2015-10-04 23:00:05'), 
    (1845984, 239950, 675, 75030, 1373, 77078, '2015-10-04 12:00:04', '2015-10-04 12:00:04'), 
    (1849749, 239950, 857, 97028, 1617, 99502, '2015-10-04 13:00:05', '2015-10-04 13:00:05'), 
    (1853996, 239950, 1021, 113648, 1801, 116470, '2015-10-04 14:00:04', '2015-10-04 14:00:04'), 
    (1858726, 239950, 1148, 126624, 1919, 129691, '2015-10-04 15:00:04', '2015-10-04 15:00:04'), 
    (1863954, 239950, 1297, 137950, 2019, 141266, '2015-10-04 16:00:04', '2015-10-04 16:00:04'), 
    (1869723, 239950, 1427, 148069, 2102, 151598, '2015-10-04 17:00:04', '2015-10-04 17:00:04'), 
    (1875982, 239950, 1549, 156391, 2194, 160134, '2015-10-04 18:00:05', '2015-10-04 18:00:05'), 
    (1882622, 239950, 1618, 161312, 2232, 165162, '2015-10-04 19:00:07', '2015-10-04 19:00:07'), 
    (1889616, 239950, 1683, 164783, 2261, 168727, '2015-10-04 20:00:06', '2015-10-04 20:00:06'), 
    (1896990, 239950, 1722, 167718, 2278, 171718, '2015-10-04 21:00:06', '2015-10-04 21:00:06'), 
    (1904151, 239950, 1743, 170240, 2290, 174273, '2015-10-04 22:00:07', '2015-10-04 22:00:07'), 
    (1911880, 239950, 1761, 172363, 2300, 176424, '2015-10-04 23:00:06', '2015-10-04 23:00:06'); 

现在当我执行查询

select avg(pd.shares) AS shares, avg(pd.likes) AS likes, avg(pd.comments) AS comments FROM video_data pd JOIN video_data pd1 ON pd1.video_id = pd.`video_id` AND TIMEDIFF(pd.created_at, pd1.created_at) <= '02:00:00'; 

+-----------+-------------+-----------+ 
| shares | likes | comments | 
+-----------+-------------+-----------+ 
| 1298.2077 | 123542.5769 | 2032.2769 | 
+-----------+-------------+-----------+ 

但会在它看起来像likes值的结果时是ALL喜欢在数据库中的平均水平,而不仅仅是那些只有谁是2相隔几小时,对吧?或者它是正确的?

+0

“正确的吗?”我们怎么知道? – Strawberry

+0

ID 4和ID 7似乎是在相同的日期为同一个视频,所以我很困惑,为什么这些将是单独的行。 – Strawberry

+0

没有channel_id,也没有明确说明如何定义时间范围。 – Strawberry

但这只是返回我每次的结果,因为TIMEDIFF的结果总是00:00:00

它这样做becauase你使用相同的列:

TIMEDIFF(`created_at`, `created_at`) 

所以它的几乎不可能使它产生不同的结果。您可能想使用NOW()作为参数之一?

+0

我明白这一点。这只是我试图获得结果但失败的一个例子。 'NOW()'虽然不起作用,因为video_data可能是10和12小时,并且仍然需要计算,因为这两个数据有2小时的时差。 – Musterknabe

+0

@MarcinOrlowski你是绝对正确的,但不回答这个问题 –

select t.*,avg(t1.views) from videos t join videos t1 on 
t1.video_id=t.video_id 
and timediff(t.created_at,t1.created_at)< '02:00:00' 
group by t.video_id 

尝试此查询它应该工作

+0

错字:'created_at'不是'crated_at' –

+0

会改变它@MarcinOrlowski –

+0

给我第二个请,我会尝试检查,如果它返回正确的值 – Musterknabe