的R - 重新编码NA与因子的水平在分组数据
问题描述:
我有一个纵向结构的数据帧如下:的R - 重新编码NA与因子的水平在分组数据
df = structure(list(oslaua = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L), .Label = c("E06000001", "E06000002",
"E06000003", "E06000004"), class = "factor"), wave = structure(c(1L,
2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L), .Label = c("0",
"1", "2", "3"), class = "factor"), old.la = structure(c(1L, 1L,
NA, 1L, 2L, 2L, 2L, NA, 3L, 3L, 3L, 3L, 4L, 4L, NA), .Label = c("00EB",
"00EC", "00EE", "00EF"), class = "factor"), la = structure(c(1L,
1L, NA, 1L, 2L, 2L, 2L, NA, 3L, 3L, 3L, 3L, 4L, 4L, NA), .Label = c("Hartlepool UA",
"Middlesbrough UA", "Redcar and Cleveland UA", "Stockton-on-Tees UA"
), class = "factor"), dclg.code = structure(c(1L, 1L, NA, 1L,
4L, 4L, 4L, NA, 3L, 3L, 3L, 3L, 2L, 2L, NA), .Label = c("H0724",
"H0738", "V0728", "W0734"), class = "factor"), novo_entries = c(24L,
4L, 0L, 1L, 35L, 15L, 1L, 0L, 49L, 7L, 2L, 2L, 40L, 14L, 0L)), .Names = c("oslaua",
"wave", "old.la", "la", "dclg.code", "novo_entries"), row.names = c(NA,
15L), class = "data.frame")
我的标识符变量是oslaua
和我的时间变量为wave
。 old.la
,la
和dclg.code
是具有NA的因子变量。我的 目标包括通过与每个标识符(oslaua
)关联的每个变量的级别重新编码我的NA
。我试图使用的old.la
的情况下做到这一点,以下:
df = df %>% group_by(oslaua) %>% mutate(old.la.1 = ifelse(is.na(old.la), unique(old.la), old.la)) %>% as.data.frame()
我部分地得到我的目的,但也有一些问题,你可以看到:
> df
oslaua wave old.la la dclg.code novo_entries old.la.1
1 E06000001 0 00EB Hartlepool UA H0724 24 1
2 E06000001 1 00EB Hartlepool UA H0724 4 1
3 E06000001 2 <NA> <NA> <NA> 0 2
4 E06000001 3 00EB Hartlepool UA H0724 1 1
5 E06000002 0 00EC Middlesbrough UA W0734 35 2
6 E06000002 1 00EC Middlesbrough UA W0734 15 2
7 E06000002 2 00EC Middlesbrough UA W0734 1 2
8 E06000002 3 <NA> <NA> <NA> 0 2
9 E06000003 0 00EE Redcar and Cleveland UA V0728 49 3
10 E06000003 1 00EE Redcar and Cleveland UA V0728 7 3
11 E06000003 2 00EE Redcar and Cleveland UA V0728 2 3
12 E06000003 3 00EE Redcar and Cleveland UA V0728 2 3
13 E06000004 0 00EF Stockton-on-Tees UA H0738 40 4
14 E06000004 1 00EF Stockton-on-Tees UA H0738 14 4
15 E06000004 2 <NA> <NA> <NA> 0 4
具体而言,的水平因素会改变它们的格式,并且在某些情况下观察记录错误(例如oslaua = E06000001
- 第3行)
我不明白为什么水平会改变它们的格式以及我如何保留它们的原始(字母数字)格式。此外,为什么一些观察记录没有正确记录。
任何建议来解决这些真的很感激。
谢谢!
答
下面是使用data.table
library(data.table)
setDT(df)[, old.la1 := levels(droplevels(old.la)), by = oslaua]
对于多个列的另一种选择
nm1 <- c("old.la", "la", "dclg.code")
df1 <- setDT(df)[, lapply(.SD, function(x) levels(droplevels(x))[1]) ,
by = oslaua, .SDcols = nm1][df, on = "oslaua"]
df1[, !grepl("i\\.", names(df1)), with = FALSE]
我们的最初的想法是
setDT(df)[, (nm1) := lapply(.SD, function(x)
factor(levels(droplevels(x)))) , by = oslaua, .SDcols = nm1]
但由于某些原因,转换为factor
每个组内得到具有在输出只为每一列单级一些怪异输出(使用v1.10.0)
答
这应该为你工作:
library(zoo)
df %>%
group_by(oslaua) %>%
mutate(old.la.1 = na.locf(old.la))
它采用zoo
的最后一个结转功能来代替NA的。它是安全的。在您的代码中,ifelse
正在构建两个向量(一个用于测试解析为TRUE
,另一个用于解析为FALSE
的情况。为确保兼容性,似乎ifelse
将这些向量都减少为最基本的常见类型。在因素的情况下,这是一个整数(运行typeof(df$old.la)
。
答
或者,避免造成新的变数更优雅的解决方案将使用fill()
从tidyr
:
data = data %>% group_by(oslaua) %>% fill(old.la, la, dclg.code)
data
其中收益率:
> data
Source: local data frame [15 x 6]
Groups: oslaua [4]
oslaua wave old.la la dclg.code novo_entries
<fctr> <fctr> <fctr> <fctr> <fctr> <int>
1 E06000001 0 00EB Hartlepool UA H0724 24
2 E06000001 1 00EB Hartlepool UA H0724 4
3 E06000001 2 00EB Hartlepool UA H0724 0
4 E06000001 3 00EB Hartlepool UA H0724 1
5 E06000002 0 00EC Middlesbrough UA W0734 35
6 E06000002 1 00EC Middlesbrough UA W0734 15
7 E06000002 2 00EC Middlesbrough UA W0734 1
8 E06000002 3 00EC Middlesbrough UA W0734 0
9 E06000003 0 00EE Redcar and Cleveland UA V0728 49
10 E06000003 1 00EE Redcar and Cleveland UA V0728 7
11 E06000003 2 00EE Redcar and Cleveland UA V0728 2
12 E06000003 3 00EE Redcar and Cleveland UA V0728 2
13 E06000004 0 00EF Stockton-on-Tees UA H0738 40
14 E06000004 1 00EF Stockton-on-Tees UA H0738 14
15 E06000004 2 00EF Stockton-on-Tees UA H0738 0
非常感谢@akrun,那正是我所需要的。当我申请我的解决方案时,我仍然不明白为什么它会改变这个因素的格式。 – Edu
@Edu它变成了'character',但是在'df1'之后,你可以将列转换为'factor',即'df2 akrun