MITIE ner model

问题描述:

我一直在探索使用预训练的MITIE模型进行命名实体提取。无论如何,我可以看看他们的实际模型而不是使用预训练模型吗?该模型是否可用作开源软件?MITIE ner model

设置事情:

对于初学者来说,你可以下载哪些 包含注释文本的语料库从一个巨大的转储文件中English Language Model称为 total_word_feature_extractor.dat

之后,从他们的 官方Git下载/克隆MITIE-Master Project

如果您正在运行Windows O.S然后下载CMake

如果您正在运行基于x64的Windows O.S,然后安装适用于C++编译器的Visual Studio 2015社区版。

下载后,将上述内容全部提取到文件夹中。

The project structure will look something like this

为VS,从2015年开始>应用程序> Visual Studio的开发者打开命令提示符,然后导航到Tools文件夹,你会看到5里面的子文件夹。

enter image description here

下一步是建立ner_conll,ner_stream,train_freebase_relation_detector和wordrep包,使用下面的CMake在Visual Studio开发人员命令提示符命令。

像这样:

enter image description here

对于ner_conll:

cd "C:\Users\xyz\Documents\MITIE-master\tools\ner_conll" 

ⅰ)mkdir build ⅱ)cd build ⅲ)cmake -G "Visual Studio 14 2015 Win64" .. ⅳ)cmake --build . --config Release --target install

对于ner_stream:

cd "C:\Users\xyz\Documents\MITIE-master\tools\ner_stream" 

ⅰ)mkdir build ⅱ)cd build ⅲ)cmake -G "Visual Studio 14 2015 Win64" .. ⅳ)cmake --build . --config Release --target install

对于train_freebase_relation_detector:

cd "C:\Users\xyz\Documents\MITIE-master\tools\train_freebase_relation_detector" 

ⅰ)mkdir build ⅱ)cd build ⅲ)cmake -G "Visual Studio 14 2015 Win64" .. IV)cmake --build . --config Release --target install

对于wordrep:

cd "C:\Users\xyz\Documents\MITIE-master\tools\wordrep" 

我)mkdir build II)cd build III)cmake -G "Visual Studio 14 2015 Win64" .. IV)cmake --build . --config Release --target install

后您建立他们,你会得到一些警告150-160,别担心。

现在,导航到"C:\Users\xyz\Documents\MITIE-master\examples\cpp\train_ner"

做一个JSON文件“data.json”使用Visual Studio代码手动注释文本,这样的事情:

{ 
    "AnnotatedTextList": [ 
    { 
     "text": "I want to travel from New Delhi to Bangalore tomorrow.", 
     "entities": [ 
     { 
      "type": "FromCity", 
      "startPos": 5, 
      "length": 2 
     }, 
     { 
      "type": "ToCity", 
      "startPos": 8, 
      "length": 1 
     }, 
     { 
      "type": "TimeOfTravel", 
      "startPos": 9, 
      "length": 1 
     } 
     ] 
    } 
    ] 
} 

您可以添加更多的话语和注释他们,训练数据越多,预测精度就越好。

这个带注释的JSON也可以通过jQuery或Angular等前端工具创建。但为了简洁起见,我手工创建了它们。

现在,解析我们带注释的JSON文件并将其传递给ner_training_instance的add_entity方法。

但是C++不支持反射来反序列化JSON,这就是为什么你可以使用这个库Rapid JSON Parser。从他们的Git页面下载软件包并将其放在"C:\Users\xyz\Documents\MITIE-master\mitielib\include\mitie"下。

现在我们必须自定义train_ner_example.cpp文件,以解析我们注释的自定义实体JSON并将其传递给MITIE进行训练。

#include "mitie\rapidjson\document.h" 
#include "mitie\ner_trainer.h" 

#include <iostream> 
#include <vector> 
#include <list> 
#include <tuple> 
#include <string> 
#include <map> 
#include <sstream> 
#include <fstream> 

using namespace mitie; 
using namespace dlib; 
using namespace std; 
using namespace rapidjson; 

string ReadJSONFile(string FilePath) 
{ 
    ifstream file(FilePath); 
    string test; 
    cout << "path: " << FilePath; 
    try 
    { 
     std::stringstream buffer; 
     buffer << file.rdbuf(); 
     test = buffer.str(); 
     cout << test; 
     return test; 
    } 
    catch (exception &e) 
    { 
     throw std::exception(e.what()); 
    } 
} 

//Helper function to tokenize a string based on multiple delimiters such as ,.;:- or whitspace 
std::vector<string> SplitStringIntoMultipleParameters(string input, string delimiter) 
{ 
    std::stringstream stringStream(input); 
    std::string line; 

    std::vector<string> TokenizedStringVector; 

    while (std::getline(stringStream, line)) 
    { 
     size_t prev = 0, pos; 
     while ((pos = line.find_first_of(delimiter, prev)) != string::npos) 
     { 
      if (pos > prev) 
       TokenizedStringVector.push_back(line.substr(prev, pos - prev)); 
      prev = pos + 1; 
     } 
     if (prev < line.length()) 
      TokenizedStringVector.push_back(line.substr(prev, string::npos)); 
    } 
    return TokenizedStringVector; 
} 

//Parse the JSON and store into appropriate C++ containers to process it. 
std::map<string, list<tuple<string, int, int>>> FindUtteranceTuple(string stringifiedJSONFromFile) 
{ 
    Document document; 
    cout << "stringifiedjson : " << stringifiedJSONFromFile; 
    document.Parse(stringifiedJSONFromFile.c_str()); 

    const Value& a = document["AnnotatedTextList"]; 
    assert(a.IsArray()); 

    std::map<string, list<tuple<string, int, int>>> annotatedUtterancesMap; 

    for (int outerIndex = 0; outerIndex < a.Size(); outerIndex++) 
    { 
     assert(a[outerIndex].IsObject()); 
     assert(a[outerIndex]["entities"].IsArray()); 
     const Value &entitiesArray = a[outerIndex]["entities"]; 

     list<tuple<string, int, int>> entitiesTuple; 

     for (int innerIndex = 0; innerIndex < entitiesArray.Size(); innerIndex++) 
     { 
      entitiesTuple.push_back(make_tuple(entitiesArray[innerIndex]["type"].GetString(), entitiesArray[innerIndex]["startPos"].GetInt(), entitiesArray[innerIndex]["length"].GetInt())); 
     } 

     annotatedUtterancesMap.insert(pair<string, list<tuple<string, int, int>>>(a[outerIndex]["text"].GetString(), entitiesTuple)); 
    } 

    return annotatedUtterancesMap; 
} 

int main(int argc, char **argv) 
{ 

    try { 

     if (argc != 3) 
     { 
      cout << "You must give the path to the MITIE English total_word_feature_extractor.dat file." << endl; 
      cout << "So run this program with a command like: " << endl; 
      cout << "./train_ner_example ../../../MITIE-models/english/total_word_feature_extractor.dat" << endl; 
      return 1; 
     } 

     else 
     { 
      string filePath = argv[2]; 
      string stringifiedJSONFromFile = ReadJSONFile(filePath); 

      map<string, list<tuple<string, int, int>>> annotatedUtterancesMap = FindUtteranceTuple(stringifiedJSONFromFile); 


      std::vector<string> tokenizedUtterances; 
      ner_trainer trainer(argv[1]); 

      for each (auto item in annotatedUtterancesMap) 
      { 
       tokenizedUtterances = SplitStringIntoMultipleParameters(item.first, " "); 
       mitie::ner_training_instance *currentInstance = new mitie::ner_training_instance(tokenizedUtterances); 
       for each (auto entity in item.second) 
       { 
        currentInstance -> add_entity(get<1>(entity), get<2>(entity), get<0>(entity).c_str()); 
       } 
       // trainingInstancesList.push_back(currentInstance); 
       trainer.add(*currentInstance); 
       delete currentInstance; 
      } 


      trainer.set_num_threads(4); 

      named_entity_extractor ner = trainer.train(); 

      serialize("new_ner_model.dat") << "mitie::named_entity_extractor" << ner; 

      const std::vector<std::string> tagstr = ner.get_tag_name_strings(); 
      cout << "The tagger supports " << tagstr.size() << " tags:" << endl; 
      for (unsigned int i = 0; i < tagstr.size(); ++i) 
       cout << "\t" << tagstr[i] << endl; 
      return 0; 
     } 
    } 

    catch (exception &e) 
    { 
     cerr << "Failed because: " << e.what(); 
    } 
} 

的add_entity接受3个参数,所述标记化的字符串可以是矢量,自定义实体类型名称,一个字的在句子的起始索引和字的范围内。

现在我们必须通过在Developer Command Prompt Visual Studio中使用以下命令来构建ner_train_example.cpp。

1)cd "C:\Users\xyz\Documents\MITIE-master\examples\cpp\train_ner" 2)mkdir build 3)cd build 4)cmake -G "Visual Studio 14 2015 Win64" .. 5)cmake --build . --config Release --target install 6)cd Release

7)train_ner_example "C:\\Users\\xyz\\Documents\\MITIE-master\\MITIE-models\\english\\total_word_feature_extractor.dat" "C:\\Users\\xyz\\Documents\\MITIE-master\\examples\\cpp\\train_ner\\data.json"

在成功地执行上述我们将得到一个new_ner_model.dat文件,这是我们的话语的序列化和训练版本。

现在,该.dat文件可以传递给RASA或独立使用。

对于它传递给RASA:

充分利用config.json文件,如下所示:

{ 
    "project": "demo", 
    "path": "C:\\Users\\xyz\\Desktop\\RASA\\models", 
    "response_log": "C:\\Users\\xyz\\Desktop\\RASA\\logs", 
    "pipeline": ["nlp_mitie", "tokenizer_mitie", "ner_mitie", "ner_synonyms", "intent_entity_featurizer_regex", "intent_classifier_mitie"], 
    "data": "C:\\Users\\xyz\\Desktop\\RASA\\data\\examples\\rasa.json", 
    "mitie_file" : "C:\\Users\\xyz\\Documents\\MITIE-master\\examples\\cpp\\train_ner\\Release\\new_ner_model.dat", 
    "fixed_model_name": "demo", 
    "cors_origins": ["*"], 
    "aws_endpoint_url": null, 
    "token": null, 
    "num_threads": 2, 
    "port": 5000 
}