你如何蟒蛇
问题描述:
我发现在C++例子中使用Akaze开放CV: http://docs.opencv.org/3.0-beta/doc/tutorials/features2d/akaze_matching/akaze_matching.html你如何蟒蛇
但没有在Python展示了如何使用此功能检测任何实例(也无法找到任何更约aKAZE文档有ORB SIFT,SURF等,但不是我要找的) http://docs.opencv.org/3.1.0/db/d27/tutorial_py_table_of_contents_feature2d.html#gsc.tab=0
能有人可以共享或告诉我在哪里可以找到信息如何与akaze匹配蟒蛇图片?
答
我不知道在哪里可以找到它,我把它工作的方式是通过这个功能,使用蛮力匹配:
def kaze_match(im1_path, im2_path):
# load the image and convert it to grayscale
im1 = cv2.imread(im1_path)
im2 = cv2.imread(im2_path)
gray1 = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
# initialize the AKAZE descriptor, then detect keypoints and extract
# local invariant descriptors from the image
detector = cv2.AKAZE_create()
(kps1, descs1) = detector.detectAndCompute(gray1, None)
(kps2, descs2) = detector.detectAndCompute(gray2, None)
print("keypoints: {}, descriptors: {}".format(len(kps1), descs1.shape))
print("keypoints: {}, descriptors: {}".format(len(kps2), descs2.shape))
# Match the features
bf = cv2.BFMatcher(cv2.NORM_HAMMING)
matches = bf.knnMatch(descs1,descs2, k=2) # typo fixed
# Apply ratio test
good = []
for m,n in matches:
if m.distance < 0.9*n.distance:
good.append([m])
# cv2.drawMatchesKnn expects list of lists as matches.
im3 = cv2.drawMatchesKnn(im1, kps1, im2, kps2, good[1:20], None, flags=2)
cv2.imshow("AKAZE matching", im3)
cv2.waitKey(0)
记住,特征向量是二元载体。因此,如果您愿意,相似性基于汉明距离,而不是常用的L2范数或欧几里得距离。
它的工作原理感谢 – JeremyK
比率测试是否正确?它给我关键点数字而不是比例。 – JeremyK