如何将系列转换为熊猫数据框
我有两个CSV需要根据一列进行比较。我需要将匹配的行放入一个csv中,并在其他行中放入不匹配的行。 因此,我在第二个csv中创建了该列的索引并首先循环。如何将系列转换为熊猫数据框
df1 = pd.read_csv(file1,nrows=100)
df2 = pd.read_csv(file2,nrows=100)
df2.set_index('crc', inplace = True)
matched_list = []
non_matched_list = []
for _, row in df1.iterrows():
try:
x = df2.loc[row['crc']]
matched_list.append(x)
except KeyError:
non_matched_list.append(row)
这里的x是按以下格式
policyID 448094
statecode FL
county CLAY COUNTY
eq_site_limit 1322376.3
hu_site_limit 1322376.3
fl_site_limit 1322376.3
fr_site_limit 1322376.3
tiv_2011 1322376.3
tiv_2012 1438163.57
eq_site_deductible 0
hu_site_deductible 0.0
fl_site_deductible 0
fr_site_deductible 0
point_latitude 30.063936
point_longitude -81.707664
line Residential
construction Masonry
point_granularity 3
Name: 448094,FL,CLAY COUNTY,1322376.3,1322376.3,1322376.3,1322376.3,1322376.3,0,0.0, dtype: object
我的输出CSV应在以下格式
policyID,statecode,county,eq_site_limit,hu_site_limit,fl_site_limit,fr_site_limit,tiv_2011,tiv_2012,eq_site_deductible,hu_site_deductible,fl_site_deductible,fr_site_deductible,point_latitude,point_longitude,line,construction,point_granularity
114455,FL,CLAY COUNTY,498960,498960,498960,498960,498960,792148.9,0,9979.2,0,0,30.102261,-81.711777,Residential,Masonry,1
对于匹配和无与伦比的所有系列的一个系列。我该怎么做? 我无法在第二个csv中摆脱索引,因为重要的性能。
以下是两个csv文件的内容。 文件1:
policyID,statecode,county,crc,hu_site_limit,fl_site_limit,fr_site_limit,tiv_2011,tiv_2012,eq_site_deductible,hu_site_deductible,fl_site_deductible,fr_site_deductible,point_latitude,point_longitude,line,construction,point_granularity
114455,FL,CLAY COUNTY,589658,498960,498960,498960,498960,792148.9,0,9979.2,0,0,30.102261,-81.711777,Residential,Masonry,1
448094,FL,CLAY COUNTY,1322376.3,1322376.3,1322376.3,1322376.3,1322376.3,1438163.57,0,0,0,0,30.063936,-81.707664,Residential,Masonry,3
206893,FL,CLAY COUNTY,745689.4,190724.4,190724.4,190724.4,190724.4,192476.78,0,0,0,0,30.089579,-81.700455,Residential,Wood,1
333743,FL,CLAY COUNTY,0,12563.76,0,0,79520.76,86854.48,0,0,0,0,30.063236,-81.707703,Residential,Wood,3
172534,FL,CLAY COUNTY,0,254281.5,0,254281.5,254281.5,246144.49,0,0,0,0,30.060614,-81.702675,Residential,Wood,1
785275,FL,CLAY COUNTY,0,515035.62,0,0,515035.62,884419.17,0,0,0,0,30.063236,-81.707703,Residential,Masonry,3
995932,FL,CLAY COUNTY,0,19260000,0,0,19260000,20610000,0,0,0,0,30.102226,-81.713882,Commercial,Reinforced Concrete,1
223488,FL,CLAY COUNTY,328500,328500,328500,328500,328500,348374.25,0,16425,0,0,30.102217,-81.707146,Residential,Wood,1
433512,FL,CLAY COUNTY,315000,315000,315000,315000,315000,265821.57,0,15750,0,0,30.118774,-81.704613,Residential,Wood,1
142071,FL,CLAY COUNTY,705600,705600,705600,705600,705600,1010842.56,14112,35280,0,0,30.100628,-81.703751,Residential,Masonry,1
文件2:
policyID,statecode,county,crc,hu_site_limit,fl_site_limit,fr_site_limit,tiv_2011,tiv_2012,eq_site_deductible,hu_site_deductible,fl_site_deductible,fr_site_deductible,point_latitude,point_longitude,line,construction,point_granularity
119736,FL,CLAY COUNTY,498960,498960,498960,498960,498960,792148.9,0,9979.2,0,0,30.102261,-81.711777,Residential,Masonry,1
448094,FL,CLAY COUNTY,1322376.3,1322376.3,1322376.3,1322376.3,1322376.3,1438163.57,0,0,0,0,30.063936,-81.707664,Residential,Masonry,3
206893,FL,CLAY COUNTY,190724.4,190724.4,190724.4,190724.4,190724.4,192476.78,0,0,0,0,30.089579,-81.700455,Residential,Wood,1
333743,FL,CLAY COUNTY,0,79520.76,0,0,79520.76,86854.48,0,0,0,0,30.063236,-81.707703,Residential,Wood,3
172534,FL,CLAY COUNTY,0,254281.5,0,254281.5,254281.5,246144.49,0,0,0,0,30.060614,-81.702675,Residential,Wood,1
785275,FL,CLAY COUNTY,0,51564.9,0,0,515035.62,884419.17,0,0,0,0,30.063236,-81.707703,Residential,Masonry,3
995932,FL,CLAY COUNTY,0,457962,0,0,19260000,20610000,0,0,0,0,30.102226,-81.713882,Commercial,Reinforced Concrete,1
223488,FL,CLAY COUNTY,328500,328500,328500,328500,328500,348374.25,0,16425,0,0,30.102217,-81.707146,Residential,Wood,1
433512,FL,CLAY COUNTY,315000,315000,315000,315000,315000,265821.57,0,15750,0,0,30.118774,-81.704613,Residential,Wood,1
142071,FL,CLAY COUNTY,705600,705600,705600,705600,705600,1010842.56,14112,35280,0,0,30.100628,-81.703751,Residential,Masonry,1
253816,FL,CLAY COUNTY,831498.3,831498.3,831498.3,831498.3,831498.3,1117791.48,0,0,0,0,30.10216,-81.719444,Residential,Masonry,1
894922,FL,CLAY COUNTY,0,24059.09,0,0,24059.09,33952.19,0,0,0,0,30.095957,-81.695099,Residential,Wood,1
编辑: 新增样本CSV
我认为你可以这样来做:
df1.loc[df1.crc.isin(df2.index)].to_csv('/path/to/matched.csv', index=False)
df1.loc[~df1.crc.isin(df2.index)].to_csv('/path/to/unmatched.csv', index=False)
,而不是循环.. 。
演示:
In [62]: df1.loc[df1.crc.isin(df2.index)].to_csv(r'c:/temp/matched.csv', index=False)
In [63]: df1.loc[~df1.crc.isin(df2.index)].to_csv(r'c:/temp/unmatched.csv', index=False)
结果:
matched.csv:
policyID,statecode,county,crc,hu_site_limit,fl_site_limit,fr_site_limit,tiv_2011,tiv_2012,eq_site_deductible,hu_site_deductible,fl_site_deductible,fr_site_deductible,point_latitude,point_longitude,line,construction,point_granularity
448094,FL,CLAY COUNTY,1322376.3,1322376.3,1322376.3,1322376.3,1322376.3,1438163.57,0,0.0,0,0,30.063935999999998,-81.70766400000001,Residential,Masonry,3
333743,FL,CLAY COUNTY,0.0,12563.76,0.0,0.0,79520.76,86854.48,0,0.0,0,0,30.063236,-81.70770300000001,Residential,Wood,3
172534,FL,CLAY COUNTY,0.0,254281.5,0.0,254281.5,254281.5,246144.49,0,0.0,0,0,30.060614,-81.702675,Residential,Wood,1
785275,FL,CLAY COUNTY,0.0,515035.62,0.0,0.0,515035.62,884419.17,0,0.0,0,0,30.063236,-81.70770300000001,Residential,Masonry,3
995932,FL,CLAY COUNTY,0.0,19260000.0,0.0,0.0,19260000.0,20610000.0,0,0.0,0,0,30.102226,-81.713882,Commercial,Reinforced Concrete,1
223488,FL,CLAY COUNTY,328500.0,328500.0,328500.0,328500.0,328500.0,348374.25,0,16425.0,0,0,30.102217,-81.707146,Residential,Wood,1
433512,FL,CLAY COUNTY,315000.0,315000.0,315000.0,315000.0,315000.0,265821.57,0,15750.0,0,0,30.118774,-81.704613,Residential,Wood,1
142071,FL,CLAY COUNTY,705600.0,705600.0,705600.0,705600.0,705600.0,1010842.56,14112,35280.0,0,0,30.100628000000004,-81.703751,Residential,Masonry,1
unmatched.csv:
policyID,statecode,county,crc,hu_site_limit,fl_site_limit,fr_site_limit,tiv_2011,tiv_2012,eq_site_deductible,hu_site_deductible,fl_site_deductible,fr_site_deductible,point_latitude,point_longitude,line,construction,point_granularity
114455,FL,CLAY COUNTY,589658.0,498960.0,498960.0,498960.0,498960.0,792148.9,0,9979.2,0,0,30.102261,-81.711777,Residential,Masonry,1
206893,FL,CLAY COUNTY,745689.4,190724.4,190724.4,190724.4,190724.4,192476.78,0,0.0,0,0,30.089578999999997,-81.700455,Residential,Wood,1
已添加CSV文件样本。 此外,这一个给出了以下错误。 AttributeError:'DataFrame'对象没有属性'crc' –
您是否将crc作为df2中的索引?因为我得到以下错误。 df1.loc [df1.crc.isin(df2.crc)] .to_csv(matched_file,index = False) 文件“D:\ venv \ lib \ site-packages \ pandas \ core \ generic.py”,行2744,在__getattr__ 返回对象.__的getAttribute __(自我,名) AttributeError的:“据帧”对象有没有属性“CRC” –
@IshanBhatt,不,它会自动从您的CSV文件解析 - 请参阅更新 – MaxU
你可以操纵文件,这样至少有一个“无与伦比的“里面的CRC? – MaxU