如何使用层次结构索引来保存和检索Pandas数据框?
问题描述:
我需要创建并保存带有分层索引的Pandas数据框。在下面我创建两个数据框,然后连接它们以创建一个具有分层索引的新数据框。如何使用层次结构索引来保存和检索Pandas数据框?
data1 = np.random.rand(5,5)
data2 = np.random.rand(5,5)
df1 = pd.DataFrame(data1, columns = ['a', 'b', 'c', 'd', 'e'], index=['i1', 'i2', 'i3', 'i4', 'i5'])
df2 = pd.DataFrame(data2, columns = ['a', 'b', 'c', 'd', 'e'], index=['i1', 'i2', 'i3', 'i4', 'i5'])
df = pd.concat([df1, df2], keys=['first', 'second'])
print "Original Data frame"
print df
# Save to file.
df.to_csv('test')
# Read from file.
df_new = pd.DataFrame.from_csv('test')
print "Saved Data frame"
print df_new
下面是输出,我得到的,
Original Data frame
a b c d e
first i1 0.926553 0.180306 0.182887 0.783061 0.832914
i2 0.899054 0.130367 0.615534 0.965580 0.669495
i3 0.931004 0.425528 0.068938 0.166522 0.714399
i4 0.082365 0.587194 0.993864 0.187864 0.066035
i5 0.668671 0.294744 0.136317 0.358732 0.529674
second i1 0.916310 0.361423 0.700380 0.386119 0.273667
i2 0.102542 0.454106 0.565760 0.259323 0.104743
i3 0.410280 0.379986 0.288921 0.177819 0.919343
i4 0.447279 0.113711 0.032273 0.335358 0.717824
i5 0.995781 0.356817 0.146785 0.972401 0.169360
Saved Data frame
Unnamed: 1 a b c d e
first i1 0.926553 0.180306 0.182887 0.783061 0.832914
first i2 0.899054 0.130367 0.615534 0.965580 0.669495
first i3 0.931004 0.425528 0.068938 0.166522 0.714399
first i4 0.082365 0.587194 0.993864 0.187864 0.066035
first i5 0.668671 0.294744 0.136317 0.358732 0.529674
second i1 0.916310 0.361423 0.700380 0.386119 0.273667
second i2 0.102542 0.454106 0.565760 0.259323 0.104743
second i3 0.410280 0.379986 0.288921 0.177819 0.919343
second i4 0.447279 0.113711 0.032273 0.335358 0.717824
second i5 0.995781 0.356817 0.146785 0.972401 0.169360
当我这个新的数据帧保存到一个CSV文件(“测试”),并读回,我失去了分层索引。有没有办法将数据保存到文件中,这样当我读回数据时,我会保留分层索引?
答
以另一种方式保存它,而不是使用csv。例如泡菜:
df.to_pickle('dataframe.pickle')
这保留了分级索引。你读它又来了:
pd.read_pickle('dataframe.pickle')
大熊猫有几个IO方法,你可以在documentation读到它们。
答
您可以:
重置索引和数据帧保存到CSV,阅读它从CSV回来,然后 设置索引回到原来的(就地)。
df
Out[11]:
a b c d e
first i1 0.935478 0.455757 0.607418 0.850291 0.704326
i2 0.675752 0.339017 0.999949 0.508480 0.888817
i3 0.463371 0.803389 0.048469 0.599697 0.423603
i4 0.935294 0.933699 0.843289 0.182535 0.255847
i5 0.321236 0.120010 0.647876 0.000517 0.032592
second i1 0.172044 0.691660 0.799164 0.194785 0.302880
i2 0.432988 0.511229 0.451268 0.203145 0.560563
i3 0.442584 0.771483 0.839945 0.716374 0.533183
i4 0.167898 0.962646 0.152245 0.400280 0.210355
i5 0.736365 0.511057 0.256672 0.619250 0.790739
df.reset_index()
Out[12]:
level_0 level_1 a b c d e
0 first i1 0.935478 0.455757 0.607418 0.850291 0.704326
1 first i2 0.675752 0.339017 0.999949 0.508480 0.888817
2 first i3 0.463371 0.803389 0.048469 0.599697 0.423603
3 first i4 0.935294 0.933699 0.843289 0.182535 0.255847
4 first i5 0.321236 0.120010 0.647876 0.000517 0.032592
5 second i1 0.172044 0.691660 0.799164 0.194785 0.302880
6 second i2 0.432988 0.511229 0.451268 0.203145 0.560563
7 second i3 0.442584 0.771483 0.839945 0.716374 0.533183
8 second i4 0.167898 0.962646 0.152245 0.400280 0.210355
9 second i5 0.736365 0.511057 0.256672 0.619250 0.790739
df.reset_index().to_csv('test.csv', index=False)
df3 = pd.read_csv('test.csv')
df3.set_index(['level_0', 'level_1'], inplace=True)
>>> df3
Out[15]:
a b c d e
level_0 level_1
first i1 0.935478 0.455757 0.607418 0.850291 0.704326
i2 0.675752 0.339017 0.999949 0.508480 0.888817
i3 0.463371 0.803389 0.048469 0.599697 0.423603
i4 0.935294 0.933699 0.843289 0.182535 0.255847
i5 0.321236 0.120010 0.647876 0.000517 0.032592
second i1 0.172044 0.691660 0.799164 0.194785 0.302880
i2 0.432988 0.511229 0.451268 0.203145 0.560563
i3 0.442584 0.771483 0.839945 0.716374 0.533183
i4 0.167898 0.962646 0.152245 0.400280 0.210355
i5 0.736365 0.511057 0.256672 0.619250 0.790739