C++基于回溯法如何解决八皇后问题

这篇文章给大家分享的是有关C++基于回溯法如何解决八皇后问题的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

具体如下:

回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。这种方法适用于解一些组合数相当大的问题。

回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

回溯法指导思想——走不通,就掉头。设计过程:确定问题的解空间;确定结点的扩展规则;搜索。

n皇后问题

要在n*n的国际象棋棋盘中放n个皇后,使任意两个皇后都不能互相吃掉。规则:皇后能吃掉同一行、同一列、同一对角线的任意棋子。求所有的解。n=8是就是著名的八皇后问题了。

设八个皇后为xi,分别在第i行(i=1,2,3,4……,8);

问题的解状态:可以用(1,x1),(2,x2),……,(8,x8)表示8个皇后的位置;

由于行号固定,可简单记为:(x1,x2,x3,x4,x5,x6,x7,x8);

问题的解空间:(x1,x2,x3,x4,x5,x6,x7,x8),1≤xi≤8(i=1,2,3,4……,8),共88个状态;

约束条件:八个(1,x1),(2,x2) ,(3,x3),(4,x4) ,(5,x5), (6,x6) , (7,x7), (8,x8)不在同一行、同一列和同一对角线上。

盲目的枚举算法:通过8重循环模拟搜索空间中的88个状态,从中找出满足约束条件的“答案状态”。程序如下:

/*
 *作者:侯凯
 *说明:八皇后——盲目迭代法
 *日期:2013-12-18
 */
#include <iostream>
using namespace std;
bool check_1(int a[],int n)
{
for(int i=2;i<=n;i++)
{
 for(int j=1;j<=i-1;j++)
 {
  if ((a[i]==a[j])||(abs(a[i]-a[j])==i-j))
  {
   return false;
  }
 }
}
return true;//不冲突
}
void queens_1()
{
 int a[9];
 int count = 0;
 for(a[1]=1;a[1]<=8;a[1]++)
 {
  for(a[2]=1;a[2]<=8;a[2]++)
  {
   for(a[3]=1;a[3]<=8;a[3]++)
   {
    for(a[4]=1;a[4]<=8;a[4]++)
    {
     for(a[5]=1;a[5]<=8;a[5]++)
     {
      for(a[6]=1;a[6]<=8;a[6]++)
      {
       for(a[7]=1;a[7]<=8;a[7]++)
       {
        for(a[8]=1;a[8]<=8;a[8]++)
        {
         if(!check_1(a,8)) 
          continue;
         else
         {
          for(int i=1;i<=8;i++) 
          {
           cout<<a[i];
          }
          cout<<endl;
          count++;
         }
        }
       }
      }
     }
    }
   }
  }
 }
 cout<<count<<endl;
}
void main()
{
 queens_1();
}

程序思想比较简单,最后可知共92种摆放方法。如果能够排除那些没有前途的状态,会节约时间——回溯法(走不通,就回头)。

bool check_2 (int a[ ],int n)
{//多次被调用,只需一重循环 
 for(int i=1;i<=n-1;i++)
 {
  if((abs(a[i]-a[n])==n-i)||(a[i]==a[n]))
   return false;
 }  
 return true;
}
void queens_2()
{
 int a[9];
 int count = 0;
 for(a[1]=1;a[1]<=8;a[1]++)
 {
  for(a[2]=1;a[2]<=8;a[2]++)
  {
   if (!check_2(a,2)) continue;
   for(a[3]=1;a[3]<=8;a[3]++)
   {
    if (!check_2(a,3)) continue;
    for(a[4]=1;a[4]<=8;a[4]++)
    {
     if (!check_2(a,4)) continue;
     for(a[5]=1;a[5]<=8;a[5]++)
     {
      if (!check_2(a,5)) continue;
      for(a[6]=1;a[6]<=8;a[6]++)
      {
       if (!check_2(a,6)) continue;
       for(a[7]=1;a[7]<=8;a[7]++)
       {
        if (!check_2(a,7)) continue;
        for(a[8]=1;a[8]<=8;a[8]++)
        {
         if (!check_2(a,8)) 
          continue;
         else
         {
          for(int i=1;i<=8;i++) 
          {
           cout<<a[i];
          }
          cout<<endl;
          count++;
         }
        }
       }
      }
     }
    }
   }
  }
 }
 cout<<count<<endl;
}
void main()
{
 queens_2();
}

n此算法可读性很好,体现了“回溯”。但它只针对八皇后问题,解决任意的n皇后问题还要修改程序结构。如果要解决n皇后的问题,就需要将n作为参数传递给函数,函数需要重写来实现回溯(不能采用级联的for循环,n不确定);从另一方面,程序中出现了大量的for循环,而且for中的函数结构很相似,自然想到的是递归迭代回溯。这就是回溯比较常用的两种实现方法:非递归回溯和递归回溯。

非递归回溯的程序实现:

void backdate (int n)
{ 
 int count = 0;
 int a[100];
 int k = 1;
 a[1]=0; 
 while(k>0)
 {
  a[k]=a[k]+1;//对应for循环的1~n
  while((a[k]<=n)&&(!check_2(a,k)))//搜索第k个皇后位置
  {
   a[k]=a[k]+1;
  }
  if(a[k]<=n)//找到了合理的位置
  {
   if(k==n )
   {//找到一组解
    for(int i=1;i<=8;i++) 
    {
     cout<<a[i];
    }
    cout<<endl;
    count++;
   } 
   else 
   {
    k=k+1;//继续为第k+1个皇后找到位置,对应下一级for循环 
    a[k]=0;//下一个皇后一定要从头开始搜索
   }
  }
  else
  {
   k=k-1;//回溯,对应执行外内层for循环回到更上层 
  }
 }
 cout<<count<<endl;
}
void main()
{
 backdate(8);
}

这样也可以得到,8皇后问题的92中结果。更简单、可读的方法是采用递归的方式,如下:

int a[100], n, count;
void backtrack(int k)
{
 if (k>n)//找到解
 {
  for(int i=1;i<=8;i++) 
  {
   cout<<a[i];
  }
  cout<<endl;
  count++;
 }
 else
 {
  for (int i = 1;i <=n; i++)
  {
   a[k] = i;
   if (check_2(a,k) == 1)
   {backtrack(k+1);}
  }
 }
}
void main()
{
 n=8,count=0;
 backtrack(1);
 cout<<count<<endl;
}

可见,递归调用大大减少了代码量,也增加了程序的可读性。给出其中的一个解,如下:

C++基于回溯法如何解决八皇后问题

感谢各位的阅读!关于“C++基于回溯法如何解决八皇后问题”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!