加快SQL服务器跨应用获得汇总数据

问题描述:

在SQL Server中,我试图拼凑其抓住一排单查询,包括来自该行前两个小时的窗口中的汇总数据,以及从一个聚合数据小时后窗口。我怎样才能让这个运行更快?加快SQL服务器跨应用获得汇总数据

的行具有时间戳的毫秒精度,而不是均匀地隔开。我在此表中有50万行,并且查询似乎没有完成。许多地方都有索引,但它们似乎没有帮助。我也在考虑使用窗口函数,但我不确定它是否可能具有不均匀分布的行的滑动窗口。另外,对于未来的一个小时窗口,我不确定如何用SQL窗口完成这个工作。

Box是一个字符串,有10个独特的价值观。 进程是一个字符串,有30个唯一值。 平均duration_ms是200毫秒。 错误数据少于0.1%。 5000万行描述了数年的数据。

select 
c1.start_time, 
c1.end_time, 
c1.box, 
c1.process, 
datediff(ms,c1.start_time,c1.end_time) as duration_ms, 
datepart(dw,c1.start_time) as day_of_week, 
datepart(hour,c1.start_time) as hour_of_day, 
c3.*, 
c5.* 
from metrics_table c1 
cross apply 
(select 
    avg(cast(datediff(ms,c2.start_time,c2.end_time) as numeric)) as avg_ms, 
    count(1) as num_process_total, 
    count(distinct process) as num_process_unique, 
    count(distinct box) as num_box_unique 
    from metrics_table c2 
    where datediff(minute,c2.start_time,c1.start_time) <= 120 
    and c1.start_time> c2.start_time 
    and c2.error_code = 0 
) c3 
cross apply 
(select 
    avg(case when datediff(ms,c4.start_time,c4.end_time)>1000 then 1.0 else 0.0 end) as percent_over_thresh 
    from metrics_table c4 
    where datediff(hour,c1.start_time,c4.start_time) <= 1 
    and c4.start_time> c1.start_time 
    and c4.error_code= 0 
) c5 
where 
c1.error_code= 0 

编辑

版:SQL Azure的12.0

添加执行计划: enter image description here

+5

如果性能问题不是因为您的where谓词,我会感到惊讶。你的where子句中有函数,这意味着你必须为每一行计算datediff。在这种情况下,你正在做两次。这意味着你正在执行大约1亿次的计算。 –

+1

@Hogan我试图去开窗,但是我没有看到一种方法,如果数据点不是以均匀间隔收集的话,我会从某个时间点开始-2小时。含义从一排的差到下一个可能是几毫秒,可能是几秒钟,可能是几分钟 – user4446237

+0

是的,这是不可能在SQL Server实现(没有'范围介于INTERVAL'),你就必须做一些预聚合以保证每分钟一行等。但是'COUNT(DISTINCT ...)'不容易兼容。 –

下应该是在正确的方向迈出的一步... 注:c2.start_time & c4.start_time不再在DATEDIFF函数wrappen使他们优化搜索...

SELECT 
    c1.start_time, 
    c1.end_time, 
    c1.box, 
    c1.process, 
    DATEDIFF(ms, c1.start_time, c1.end_time) AS duration_ms, 
    DATEPART(dw, c1.start_time) AS day_of_week, 
    DATEPART(HOUR, c1.start_time) AS hour_of_day, 
    --c3.*, 
    avg_ms = CASE WHEN 
    c5.* 
FROM 
    dbo.metrics_table c1 
    CROSS APPLY (
       SELECT 
        AVG(CAST(DATEDIFF(ms, c2.start_time, c2.end_time) AS NUMERIC)) AS avg_ms, 
        COUNT(1) AS num_process_total, 
        COUNT(DISTINCT process) AS num_process_unique, 
        COUNT(DISTINCT box) AS num_box_unique 
       FROM 
        dbo.metrics_table c2 
       WHERE 
        --DATEDIFF(minute,c2.start_time,c1.start_time) <= 120 
        c2.start_time <= DATEADD(MINUTE, -120, c1.start_time) 
        --and c1.start_time> c2.start_time 
        AND c2.error_code = 0 
       ) c3 
    CROSS APPLY (
       SELECT 
        AVG(CASE WHEN DATEDIFF(ms, c4.start_time, c4.end_time) > 1000 THEN 1.0 ELSE 0.0 END 
        ) AS percent_over_thresh 
       FROM 
        dbo.metrics_table c4 
       WHERE 
        --DATEDIFF(HOUR, c1.start_time, c4.start_time) <= 1 
        c4.start_time >= DATEADD(HOUR, 1, c1.start_time) 
        --and c4.start_time> c1.start_time 
        AND c4.error_code = 0 
       ) c5 
WHERE 
    c1.error_code = 0; 

当然,使查询优化搜索没有任何好处,除非有可用的合适指标。下面列出的是适合所有3个metrics_table引用...(看什么指标目前已经上市,有可能是你需要创建一个新的指数机会)

CREATE NONCLUSTERED INDEX ixf_metricstable_errorcode_starttime ON dbo.metrics_table (
    error_code, 
    start_time 
    ) 
INCLUDE (
    end_time, 
    box, 
    process 
    ) 
WHERE 
    error_code = 0; 

我用Between并得到了良好的性能我简单的测试装备。我也使用了列存储,因为5000万条记录是DW卷:

CREATE TABLE dbo.metrics_table (
    rowId  INT IDENTITY, 
    start_time DATETIME NOT NULL, 
    end_time DATETIME NOT NULL, 
    box   VARCHAR(10) NOT NULL, 
    process  VARCHAR(10) NOT NULL, 
    error_code INT NOT NULL 
); 


-- Add records 
;WITH cte AS (
SELECT TOP 3334 ROW_NUMBER() OVER (ORDER BY (SELECT 1)) rn 
FROM sys.columns c1 
    CROSS JOIN sys.columns c2 
    CROSS JOIN sys.columns c3 
) 
INSERT INTO dbo.metrics_table (start_time, end_time, box, process, error_code) 
SELECT 
    DATEADD(ms, rn, DATEADD(day, rn % 365, '1 Jan 2017')) AS start_time, 
    DATEADD(ms, rn % 409, DATEADD(ms, rn, DATEADD(day, rn % 365, '1 Jan 2017'))) AS end_time, 
    'box' + CAST(boxes.box AS VARCHAR(10)) box, 
    'process' + CAST(boxes.box AS VARCHAR(10)) process, 
    ABS(CAST(rn % 3000 AS BIT) -1) error_code 
FROM cte c 
    CROSS JOIN (SELECT TOP 10 rn FROM cte) AS boxes(box) 
    CROSS JOIN (SELECT TOP 30 rn FROM cte) AS processes(process); 


-- Create normal clustered index to order the data 
CREATE CLUSTERED INDEX cci_metrics_table ON dbo.metrics_table (start_time, end_time, box, process); 
--CREATE CLUSTERED INDEX cci_metrics_table ON dbo.metrics_table (box, process, start_time, end_time); 

-- Convert to columnstore 
CREATE CLUSTERED COLUMNSTORE INDEX cci_metrics_table ON dbo.metrics_table WITH (MAXDOP = 1, DROP_EXISTING = ON); 



IF OBJECT_ID('tempdb..#tmp1') IS NOT NULL DROP TABLE #tmp1 

-- two hour window before, 1 hour window after 
SELECT 
    c1.start_time, 
    c1.end_time, 
    c1.box, 
    c1.process, 
    DATEDIFF(ms, c1.start_time, c1.end_time) AS duration_ms, 
    DATEPART(dw, c1.start_time) AS day_of_week, 
    DATEPART(hour, c1.start_time) AS hour_of_day, 
    c2.xavg, 
    c2.num_process_total, 
    c2.num_process_unique, 
    c2.num_box_unique, 
    c3.percent_over_thresh 

INTO #tmp1 

FROM dbo.metrics_table c1 
    CROSS APPLY 
     (
     SELECT 
      COUNT(1) AS num_process_total, 
      AVG(CAST(DATEDIFF(ms, start_time, end_time) AS NUMERIC)) xavg, 
      COUNT(DISTINCT process) num_process_unique, 
      COUNT(DISTINCT box) num_box_unique 
     FROM dbo.metrics_table c2 
     WHERE c2.error_code = 0 
      AND c2.start_time Between DATEADD(minute, -120, c1.start_time) And c1.start_time 
      AND c1.start_time > c2.start_time 
     ) c2 

    CROSS APPLY 
     (
     SELECT 
      AVG(CASE WHEN DATEDIFF(ms, c4.start_time, c4.end_time) > 1000 THEN 1.0 ELSE 0.0 END) percent_over_thresh 
     FROM dbo.metrics_table c4 
     WHERE c4.error_code = 0 
      AND c4.start_time Between c1.start_time And DATEADD(minute, 60, c1.start_time) 
      AND c4.start_time > c1.start_time 
     ) c3 

WHERE error_code = 0