关联规则

参考:http://blog.****.net/eastmount/article/details/53368440

1.关联规则

关联规则(Association Rules)是反映一个事物与其他事物之间的相互依存性和关联性,如果两个或多个事物之间存在一定的关联关系,那么,其中一个事物就能通过其他事物预测到。关联规则是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。

2.置信度与支持度

        支持度(suppport):是交易集中同时包含A和B的交易数与所有交易数之比。
                            Support(A=>B)=P(A∪B)=count(A∪B)/|D|
        置信度(confidence):是包含A和B交易数与包含A的交易数之比。
                            Confidence(A=>B)=P(B|A)=support(A∪B)/support(A)

(3) 支持度
        支持度(Support)计算在所有的交易集中,既有A又有B的概率。例如在5条记录中,既有橙汁又有可乐的记录有2条。则此条规则的支持度为 2/5=0.4,即:
                                               
Support(A=>B)=P(AB)
        现在这条规则可表述为,如果一个顾客购买了橙汁,则有50%(置信度)的可能购买可乐。而这样的情况(即买了橙汁会再买可乐)会有40%(支持度)的可能发生。 

关联规则


        (4) 置信度
        置信度(confidence)表示了这条规则有多大程度上值得可信。设条件的项的集合为A,结果的集合为B。置信度计算在A中,同时也含有B的概率(即:if A ,then B的概率)。即 :
                                               
Confidence(A=>B)=P(B|A)
        例如计算“如果Orange则Coke”的置信度。由于在含有“橙汁”的4条交易中,仅有2条交易含有“可乐”,其置信度为0.5。

(5) 最小支持度与频繁集
        发现关联规则要求项集必须满足的最小支持阈值,称为
项集的最小支持度(Minimum Support),记为supmin。支持度大于或等于supmin的项集称为频繁项集,简称频繁集,反之则称为非频繁集。通常k-项集如果满足supmin,称为k-频繁集,记作Lk。关联规则的最小置信度(Minimum Confidence)记为confmin,它表示关联规则需要满足的最低可靠性。

    (7) 强关联规则
        如果规则R:X=>Y 满足 support(X=>Y) >= supmin 且 confidence(X=>Y)>=confmin,称关联规则X=>Y为强关联规则,否则称关联规则X=>Y为弱关联规则
        在挖掘关联规则时,产生的关联规则要经过supmin和confmin的衡量,筛选出来的强关联规则才能用于指导商家的决策。

二. Apriori算法挖掘频繁项集

        关联规则对购物篮进行挖掘,通常采用两个步骤进行:
        a.找出所有频繁项集(文章中我使用Apriori算法>=最小支持度的项集)
        b.由频繁项集产生强关联规则,这些规则必须大于或者等于最小支持度和最小置信度。

面直接通过例子描述该算法:如下图所示,使用Apriori算法关联规则挖掘数据集中的频繁项集。(最小支持度计数为2)

关联规则

        具体过程如下所示:

关联规则

        具体分析结果:
        第一次扫描:对每个候选商品计数得C1,由于候选{D}支持度计数为1<最小支持度计数2,故删除{D}得频繁1-项集合L1;
        第二次扫描:由L1产生候选C2并对候选计数得C2,比较候选支持度计数与最小支持度计数2得频繁2-项集合L2;
        第三次扫描:用Apriori算法对L2进行连接和剪枝产生候选3项集合C3的过程如下:
        1.连接:
        C3=L2关联规则(连接)L2={{A,C},{B,C},{B,E},{C,E}}关联规则{{A,C},{B,C},{B,E},{C,E}}={{A,B,C},{A,C,E},{B,C,E}}
        2.剪枝:
        {A,B,C}的2项子集{A,B},{A,C}和{B,C},其中{A,B}不是2项子集L2,因此不是频繁的,从C3中删除;
        {A,C,E}的2项子集{A,C},{A,E}和{C,E},其中{A,E}不是2项子集L2,因此不是频繁的,从C3中删除;
        {B,C,E}的2项子集{B,C},{B,E}和{C,E},它的所有2项子集都是L2的元素,保留C3中。
        经过Apriori算法对L2连接和剪枝后产生候选3项集的集合为C3={B,C,E}. 在对该候选商品计数,由于等于最小支持度计数2,故得频繁3-项集合L3,同时由于4-项集中仅1个,故C4为空集,算法终止。