循环神经网络

RNN结构

循环神经网络的结构如下图:
循环神经网络
其中每个圆圈可以看作是一个单元,而且每个单元做的事情也是一样的,因此可以折叠呈左半图的样子。用一句话解释RNN,就是一个单元结构重复使用。

RNN是一个序列到序列的模型,假设xt−1,xt,xt+1xt−1,xt,xt+1是一个输入:“我是中国“,那么ot−1,otot−1,ot就应该对应”是”,”中国”这两个,预测下一个词最有可能是什么?就是ot+1ot+1应该是”人”的概率比较大。

因此,我们可以做这样的定义:
循环神经网络
。因为我们当前时刻的输出是由记忆和当前时刻的输入决定的,就像你现在大四,你的知识是由大四学到的知识(当前输入)和大三以及大三以前学到的东西的(记忆)的结合,RNN在这点上也类似,神经网络最擅长做的就是通过一系列参数把很多内容整合到一起,然后学习这个参数,因此就定义了RNN的基础:
循环神经网络
大家可能会很好奇,为什么还要加一个f()f()函数,其实这个函数是神经网络中的**函数,但为什么要加上它呢?
举个例子,假如你在大学学了非常好的解题方法,那你初中那时候的解题方法还要用吗?显然是不用了的。RNN的想法也一样,既然我能记忆了,那我当然是只记重要的信息啦,其他不重要的,就肯定会忘记,是吧。但是在神经网络中什么最适合过滤信息呀?肯定是**函数嘛,因此在这里就套用一个**函数,来做一个非线性映射,来过滤信息,这个**函数可能为tanh,也可为其他。
假设你大四快毕业了,要参加考研,请问你参加考研是不是先记住你学过的内容然后去考研,还是直接带几本书去参加考研呢?很显然嘛,那RNN的想法就是预测的时候带着当前时刻的记忆StSt去预测。假如你要预测“我是中国“的下一个词出现的概率,这里已经很显然了,运用softmax来预测每个词出现的概率再合适不过了,但预测不能直接带用一个矩阵来预测呀,所有预测的时候还要带一个权重矩阵V,用公式表示为:
循环神经网络
其中Ot就表示时刻t的输出。
RNN中的结构细节:
1.可以把StSt当作隐状态,捕捉了之前时间点上的信息。就像你去考研一样,考的时候记住了你能记住的所有信息。
2.otot是由当前时间以及之前所有的记忆得到的。就是你考研之后做的考试卷子,是用你的记忆得到的。
3.很可惜的是,StSt并不能捕捉之前所有时间点的信息。就像你考研不能记住所有的英语单词一样。
4.和卷积神经网络一样,这里的网络中每个cell都共享了一组参数(U,V,W),这样就能极大的降低计算量了。
5.otot在很多情况下都是不存在的,因为很多任务,比如文本情感分析,都是只关注最后的结果的。就像考研之后选择学校,学校不会管你到底怎么努力,怎么心酸的准备考研,而只关注你最后考了多少分。

双向RNN

在有些情况,比如有一部电视剧,在第三集的时候才出现的人物,现在让预测一下在第三集中出现的人物名字,你用前面两集的内容是预测不出来的,所以你需要用到第四,第五集的内容来预测第三集的内容,这就是双向RNN的想法。如图是双向RNN的图解:
循环神经网络
循环神经网络
这里的S1tS2t做的是一个拼接,如果他们都是1000X1维的,拼接在一起就是1000X2维的了。
双向RNN需要的内存是单向RNN的两倍,因为在同一时间点,双向RNN需要保存两个方向上的权重参数,在分类的时候,需要同时输入两个隐藏层输出的信息。

LSTM 和 GRU

LSTM是一种特殊的RNN类型,一般的RNN结构如下图所示,是一种将以往学习的结果应用到当前学习的模型,但是这种一般的RNN存在着许多的弊端。举个例子,如果我们要预测“the clouds are in the sky”的最后一个单词,因为只在这一个句子的语境中进行预测,那么将很容易地预测出是这个单词是sky。在这样的场景中,相关的信息和预测的词位置之间的间隔是非常小的,RNN 可以学会使用先前的信息。
循环神经网络
循环神经网络
标准的RNN结构中只有一个神经元,一个tanh层进行重复的学习,这样会存在一些弊端。例如,在比较长的环境中,例如在“I grew up in France… I speak fluent French”中去预测最后的French,那么模型会推荐一种语言的名字,但是预测具体是哪一种语言时就需要用到很远以前的Franch,这就说明在长环境中相关的信息和预测的词之间的间隔可以是非常长的。在理论上,RNN 绝对可以处理这样的长环境问题。人们可以仔细挑选参数来解决这类问题中的最初级形式,但在实践中,RNN 并不能够成功学习到这些知识。然而,LSTM模型就可以解决这一问题。
循环神经网络
如图所示,标准LSTM模型是一种特殊的RNN类型,在每一个重复的模块中有四个特殊的结构,以一种特殊的方式进行交互。在图中,每一条黑线传输着一整个向量,粉色的圈代表一种pointwise 操作(将定义域上的每一点的函数值分别进行运算),诸如向量的和,而黄色的矩阵就是学习到的神经网络层。
LSTM模型的核心思想是“细胞状态”。“细胞状态”类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。
循环神经网络
LSTM 有通过精心设计的称作为“门”的结构来去除或者增加信息到细胞状态的能力。门是一种让信息选择式通过的方法。他们包含一个 sigmoid 神经网络层和一个 pointwise 乘法操作。
循环神经网络
Sigmoid 层输出 0 到 1 之间的数值,描述每个部分有多少量可以通过。0 代表“不许任何量通过”,1 就指“允许任意量通过”。LSTM 拥有三个门,来保护和控制细胞状态。
循环神经网络
在LSTM模型中,第一步是决定我们从“细胞”中丢弃什么信息,这个操作由一个忘记门层来完成。该层读取当前输入x和前神经元信息h,由ft来决定丢弃的信息。输出结果1表示“完全保留”,0 表示“完全舍弃”。
循环神经网络
第二步是确定细胞状态所存放的新信息,这一步由两层组成。sigmoid层作为“输入门层”,决定我们将要更新的值i;tanh层来创建一个新的候选值向量~Ct加入到状态中。在语言模型的例子中,我们希望增加新的主语到细胞状态中,来替代旧的需要忘记的主语。
循环神经网络
第三步就是更新旧细胞的状态,将Ct-1更新为Ct。我们把旧状态与 ft相乘,丢弃掉我们确定需要丢弃的信息。接着加上 it * ~Ct。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。在语言模型的例子中,这就是我们实际根据前面确定的目标,丢弃旧代词的信息并添加新的信息的地方。
循环神经网络
最后一步就是确定输出了,这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。在语言模型的例子中,因为语境中有一个代词,可能需要输出与之相关的信息。例如,输出判断是一个动词,那么我们需要根据代词是单数还是负数,进行动词的词形变化。

GRU如下图
循环神经网络
GRU作为LSTM的一种变体,将忘记门和输入门合成了一个单一的更新门。同样还混合了细胞状态和隐藏状态,加诸其他一些改动。最终的模型比标准的 LSTM 模型要简单,也是非常流行的变体。

RNN文本分类

用于文本分类的单向RNN结构:
循环神经网络
其实这种结构很灵活,如下是引入双向LSTM进行分类;一般流程是1. embeddding layer, 2.Bi-LSTM layer, 3.concat output, 4.FC layer, 5.softmax
循环神经网络

RCNN文本分类

RCNN模型来源于论文 Recurrent Convolutional Neural Networks for Text Classification
如下图是作者提出的模型框架,输入是一个文本D,它可以看成是由一系列单词(W1,W2,Wn)组成的。输出是一个概率分布,最大的那个位置对应文章属于的类别K。
循环神经网络
接下来我们来仔细分析一下框架训练的过程。

Word Representation Learning
为了更准确地表达单词的意思,作者使用了单词本身和其上下文来表示这个词。在论文中,使用双向循环结构来实现。使用Cl(Wi)来定义词Wi左边的文本,Cr(Wi)来定义词右边文本。这里Cl(Wi)和Cr(Wi)是长度为|c|的稠密向量。从框架结构图中左边一块的箭头指向可以发现Cl(Wi)和Cr(Wi)的计算公式如下:

循环神经网络
以“A sunset stroll along the South Bank affords an array of stunning vantage points” 这句话为例分析,结合上图,Cl(W7)表示了“Bank”这个词左侧的上下文语义信息(即“stroll along the South ”),同理,Cr(W7)表示了“Bank”这个词右侧的上下文语义信息(即“ affords an array …”)。据此,我们就可以定义单词Wi的向量表示:
循环神经网络
循环结构可以在文本的向前扫描时获取所有的Cl,在反向扫描时获取所有的Cr。时间复杂度为O(n)。当我们获得了单词Wi的表示Xi后,我们将一个线性变换与tanh**函数一起应用到Xi,并将结果传递到下一层。
循环神经网络

y是一个潜在的语义向量,每一个语义因素都将被分析,以确定代表文本的最有用的因素。

Text Representation Learning
上面部分是单词的表示,那么怎么来提取文本的特征表示呢?作者在这里使用了CNN,当前面所有的单词表示y都计算出来以后,接上一个max-pooling层
循环神经网络
这里的max函数是一个按元素max的函数,也就是说,前一步单词表达得到的y是一个n维向量,这一步y的第k个元素是上一步y的所有向量的第k个元素的最大值。池化层将不同长度的文本转换为固定长度的向量。通过使用池化层,我们可以在整个文本中捕获信息。还有其他类型的池层,比如平均池层(Collobert et al. 2011)。我们这里不使用平均池,因为这里只有几个单词和它们的组合对于捕获文档的含义非常有用。在文档中,最大池化层试图找到最重要的潜在语义因素。

模型的最后一部分是输出层:
循环神经网络
最后对y应用softmax得到概率:
循环神经网络
参考:https://blog.****.net/Kaiyuan_sjtu/article/details/84536256
https://blog.****.net/qq_39422642/article/details/78676567