深度学习Task2
文本预处理
- 读入文本
- 分词
- 建立字典,将每个词映射到一个唯一的索引(index)
- 将文本从词的序列转换为索引的序列,方便输入模型
课后练习
语言模型与数据集
语言模型
假设序列w1、w2……wt中的每个词是依次生成的,我们有
语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,w1的概率可以计算为:
n元语法
序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。n元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面n个词相关,即n阶马尔可夫链(Markov chain of order n)
当n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列n在一元语法、二元语法和三元语法中的概率分别为
n元语法可能的缺陷:
参数空间过大
数据稀疏
课后练习
循环神经网络
基于当前的输入与过去的输入序列,预测序列的下一个字符。
困惑度
困惑度是对交叉熵损失函数做指数运算后得到的值。特别地,
最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。
显然,任何一个有效模型的困惑度必须小于类别个数。在本例中,困惑度必须小于词典大小vocab_size。
课后练习