吴恩达机器学习笔记二之多变量线性回归
本节目录:
- 多维特征
- 多变量梯度下降
- 特征缩放
- 学习率
- 正规方程
1.多维特征
含有多个变量的模型,模型中的特征为(x1,x2,…xn),
比如对房价模型增加多个特征
这里,n代表特征的数量,
x(i)代表第i个训练实例,是特征矩阵中的第i行,是一个向量。
2 多变量梯度下降
多变量线性回归中,代价函数是所有建模误差的平方和,即:
我们开始随机选择一系列参数值,计算所有预测结果,再给所有参数一个新值,如此循环直到收敛。
3 特征缩放
面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯
度下降算法更快地收敛。
4.学习率
5 特征和多项式回归
6 正规方程
更多内容详情及代码请见:https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes