极大似然估计
目录
贝叶斯决策
首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:
p(w):为先验概率,表示每种类别分布的概率;
:类条件概率,表示在某种类别前提下,某事发生的概率;
为后验概率,表示某事发生了,并且它属于某一类别的概率。有了后验概率就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。
我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?
【例】从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。
设:
由已知可得:
男性和女性穿凉鞋相互独立,所以
(若只考虑分类问题,只需要比较后验概率的大小,的取值并不重要)。
由贝叶斯公式算出:
问题引出
实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率和类条件概率(各类的总体分布)
都是未知的。根据仅有的样本数据进行分类时,一种可行的办法是我们需要先对先验概率和类条件概率进行估计,然后再套用贝叶斯分类器。
先验概率的估计较简单,1、每个样本所属的自然状态都是已知的(有监督学习);2、依靠经验;3、用训练样本中各类出现的频率估计。
类条件概率的估计(非常难),原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。
概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值;如果模型都错了,那估计半天的参数,肯定也没啥意义了。
重要前提
上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。
重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 (iid条件),且有充分的训练样本。
极大似然估计
极大似然估计的原理,用一张图片来说明,如下图所示:
总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。
原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。
由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:
似然函数(linkehood function):联合概率密度函数称为相对于
的θ的似然函数。
如果是参数空间中能使似然函数
最大的θ值,则
应该是“最可能”的参数值,那么
就是θ的极大似然估计量。它是样本集的函数,记作:
求解极大似然函数
ML估计:求使得出现该组样本的概率最大的θ值。
实际中为了便于分析,定义了对数似然函数:
1. 未知参数只有一个(θ为标量)
在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:
2.未知参数有多个(θ为向量)
则θ可表示为具有S个分量的未知向量:
记梯度算子:
若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。
方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。
极大似然估计的例子
例1:设样本服从正态分布,则似然函数为:
它的对数:
求导,得方程组:
联合解得:
似然方程有唯一解:,而且它一定是最大值点,这是因为当
或
时,非负函数
。于是U和
的极大似然估计为
。
例2:设样本服从均匀分布[a, b]。则X的概率密度函数:
对样本:
很显然,L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求L(a,b)的最大值,为使L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于,否则,L(a,b)=0。类似地a不能大过
,因此,a和b的极大似然估计:
求最大似然估计量的一般步骤:
(1)写出似然函数;
(2)对似然函数取对数,并整理;
(3)求导数;
(4)解似然方程。
最大似然估计的特点:
1.比其他估计方法更加简单;
2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;
3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。
正态分布ML估计的Matlab实例:点击打开链接
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.****.net/zengxiantao1994/article/details/72787849
https://www.cnblogs.com/noah0532/p/8495654.html
数学之美_深入浅入详解的最(极)大似然估计
1.什么是最大似然估计:分类上来说属于概率论中的点估计方式
2.概率论和数理统计是互逆的思想过程。概率论可以看成是由因推果,数理统计则是由果溯因。互为逆思考的过程
3.似然估计,likelihood estimate(LE),意思是可能性。知道一个现象,他可能是由什么因引起的。
概念性的解释一下:在传统概率学派中假定的是概率分布的参数固定,随机样本。那么我们该如何谈过样本去确定这个概率分布的参数呢?这里就需要用到似然估计的方法了。也就是说,样本出现后,反推模型参数值,而这个参数值有多种可能性(M,最Max,最大的可能性。最大似然估计也叫Max likelihood estimate MLE)
4.极大似然估计的思想基础:平时人们思维过程中养成的习惯,比如一个得到过奥运金牌打把脱靶性的可能性(概率)大大小于没有打过枪的人的脱靶性。发生可能性大的发生的结果就是事实。这是平时人们思考问题的基础。
5.极大似然估计的原理:
如果X~f(x),f(x)为整个样本X的密度函数。
如果我们做了N次试验,x1,x2,...,xn对应的密度函数就是f(x1),f(x2),...,f(xn)。
我们就认为:这些所有的密度函数累乘就是最大值。也是做试验最可能发生的结果。这个最大值也叫极大。
问题:为什么是累乘(连乘)。因为这里不是求每一次概率密度函数的最大值,而是求每一次联合起来的最大值,联合起来就是相乘,然后他们的最大值是乘完之后的最大值,而不是每一个的最大值。
例1:如果X~b(1,p).X1,X2,...,Xn是来自X的一个样本,试求参数p的最大似然估计量。
这是一个二项分布,又因为这是个离散型的数据,因此要把每一个点的概率求出来,然后再相乘就是似然估计的p,另外要求极值,我们就要乘积,乘积的求导挺麻烦的,乘积的求导也叫复合函数求导。这里求导不方便,我们就把它对数化就可以把幂拿下来,而且就可做加法了。比如:
L = p(X1 = x1)*p(X2 = x2)*...*p(Xn = Xn)
lnL = lnp(X1 = x1) + lnp(X2 = x2)+...+lnp(Xn = Xn)
我们把它对数化之后,因为对数函数是单调的,所以求p的最大值也就是求lnL的最大值。
因此一般分两步:第一步是写出似然函数,第二步求导得最大值(最大值也就是等于0)
例2:在举一个连续型的函数,未知数为两个μ和sigma平方,这里不是求导数,是求偏导的过程,因为这里是偏导。