深度学习与图像融合
图像融合方法分类
low level (pixel) mide level (feature) high level (symbolic, image)
- transform fusion
- spatial fusion: fusion rules are directly applied to image pixels or image regions. 空域融合进一步分为:(1)block (2)segmentation based (3) gradient based
according to lishutao 2017 <information fusion>
1 multiscale decomposition
2 sparse representation based
3 other transforms like pca ida
4 combination of different transforms
图像融合常见问题
artifact 人工产品,指融合后图像不自然
halo artifact; halo 指光晕 halo artifact near some edges
contras decrease
reduction of sharpness
评价指标 object quality metric
参考文献: zheng liu 等 Objective Assessment of Multiresolution Image Fusion Algorithms for Context Enhancement
in Night Vision: A Comparative Study TPAMI 2012
- information theory based ones
News Room, http://spie.org/documents/Newsroom/Imported/0824/0824-2007-08-30.pdf, Sept. 2007.
- image feature based
4 Gradient based fusion performance QG [a.k.a, QAB/F]
pp. 965-968, 2008.
6 based on Spatial Frenquency QSF
to DWT Based Fusion Algorithms,” Information Fusion, vol. 8, no. 2, pp. 177-192, Apr. 2007.
7 based on Phase congruency QP
J. Zhao, R. Laganiere, and Z. Liu, “Performance Assessment of Combinative Pixel-Level Image Fusion Based on an Absolute Feature Measurement,” Int’l J. Innovative Computing, Information and Control, vol. 3, no. 6(A), pp. 1433-1447, Dec. 2007
- image structure similarity based
8 Piella's metric QP
9 Cvejie's metric QC
N. Cvejic, A. Loza, D. Bul, and N. Canagarajah, “A Similarity Metric for Assessment of Image Fusion Algorithms,” Int’l J. Signal
Processing, vol. 2, no. 3, pp. 178-182, 2005.
10 Yang's metric QY
pp. 156-160, 2008.
- human perception based
11 Chen-Varshney metric QCV
Information Fusion, vol. 8, pp. 193-207, 2007.
12 Y.Chen R.S.Blum QCB [a.k.a QHVS]
2009.
13 Visual Information Fidility Fusion metric VIFF
Y. Han, Y. Cai, Y. Cao, and X. Xu, “A new image fusion performance metric based on visual information fidelity,” Inf. Fusion, vol. 14, pp. 127–135, 2013.
应用领域
数字成像(digital phtotgrapyh),主要包括 multi focus multi exposure
多模态融合(multi modality imaging)主要包括,medical image fusion, visible /infrared image fusion
遥感图像(remote sensing) 例如 MS PAN , MS HS
深度模型
CNN
CSR (convolutional sparse representation)
SAE(stack autoencoder)
概念
CNN 能够 multistage/ hierarchical representation 网络结构 architecture
图1 传统模型, 基于多尺度变换的图像融合
图2 传统模型 ,基于稀疏表示的图像融合
以下图标来自 yu liu 等发表于information fusion 的文章: <Deep learning for pixellevel image fusion: Recent advances and future prospects>