【LeetCode】883. Projection Area of 3D Shapes

题目地址:https://leetcode.com/problems/projection-area-of-3d-shapes/

On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes.

Each value v = grid[i][j] represents a tower of v cubes placed on top of grid cell (i, j).

Now we view the projection of these cubes onto the xy, yz, and zx planes.

A projection is like a shadow, that maps our 3 dimensional figure to a 2 dimensional plane. 

Here, we are viewing the "shadow" when looking at the cubes from the top, the front, and the side.

Return the total area of all three projections.

 

          Example 1:

          Input: [[2]]
          Output: 5
          

          Example 2:

          Input: [[1,2],[3,4]]
          Output: 17
          Explanation: 
          Here are the three projections ("shadows") of the shape made with each axis-aligned plane.
          【LeetCode】883. Projection Area of 3D Shapes

          Example 3:

          Input: [[1,0],[0,2]]
          Output: 8
          

          Example 4:

          Input: [[1,1,1],[1,0,1],[1,1,1]]
          Output: 14
          

          Example 5:

          Input: [[2,2,2],[2,1,2],[2,2,2]]
          Output: 21
          

           

          Note:

          • 1 <= grid.length = grid[0].length <= 50
          • 0 <= grid[i][j] <= 50

          题意是一个N*N的方格,在每个格子上放一定数量的方块,输入就是每个格子上放的方块数量。
          求它三视图所有的阴影部分的面积。
          解题思路:
          俯视图就是求每个格子上方块数不为0的数量。
          主视图和左视图均是求行或列上最高的方块数。

          class Solution {
          public:
              int projectionArea(vector<vector<int>>& grid) {
                  int top=0,front=0 ,side=0,N=grid[0].size();
                  for(int i=0;i<N;i++){
                      int max1=0,max2=0;
                      for(int j=0;j<N;j++){
                          if(grid[i][j]>0)top++;
                          max1=max(grid[i][j],max1);
                          max2=max(grid[j][i],max2);
                      }
                      front+=max1;
                      side+=max2;
                  }
                  return front+side+top;
              }
          };