多尺度的图像细节提升
多尺度的图像细节提升
论文的全名是"DARK IMAGE ENHANCEMENT BASED ON PAIRWISE TARGET CONTRAST AND MULTI-SCALE DETAIL BOOSTING",论文核心的字段如下:
论文的核心思想类似于Retinex,使用了三个尺度的高斯模糊,再和原图做减法,获得不同程度的细节信息,然后通过一定的组合方式把这些细节信息融合到原图中,从而得到加强原图信息的能力:请参考这一篇博客介绍:SSE图像算法优化系列十二:多尺度的图像细节提升。
Python实现代码:
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from numpy import uint8
from numpy import float32
from numpy import hstack
def multiScaleSharpen(img ,radius):
h,w,chan = img.shape
GaussBlue1 = np.zeros(img.shape,dtype = uint8)
GaussBlue2 = np.zeros(img.shape, dtype=uint8)
GaussBlue3 = np.zeros(img.shape, dtype=uint8)
Dest_float_img = np.zeros(img.shape, dtype=float32)
Dest_img = np.zeros(img.shape, dtype=uint8)
w1 = 0.5
w2 = 0.5
w3 = 0.25
GaussBlue1 = cv2.GaussianBlur(img,(radius,radius),1)
GaussBlue2 = cv2.GaussianBlur(img,(radius*2-1,radius*2-1),2)
GaussBlue3 = cv2.GaussianBlur(img,(radius*4-1,radius*4-1),4)
for i in range(0,h):
for j in range(0,w):
for k in range(0,chan):
Src = img.item(i,j,k)
D1 = Src-GaussBlue1.item(i,j,k)
D2 = GaussBlue1.item(i,j,k) - GaussBlue2.item(i,j,k)
D3 = GaussBlue2.item(i,j,k) - GaussBlue3.item(i,j,k)
if(D1 > 0):
sig = 1
else:
sig = -1
Dest_float_img.itemset((i,j,k),(1-w1*sig)*D1+w2*D2+w3*D3+Src)
Dest_img = cv2.convertScaleAbs(Dest_float_img)
return Dest_img
if __name__ == '__main__':
img = cv2.imread("175_result.bmp")
#img = cv2.imread("128.jpg")
multiScaleSharpen_out = np.zeros(img.shape, dtype=uint8)
multiScaleSharpen_out = multiScaleSharpen(img,5)#jishu
#cv2.namedWindow("original image", cv2.WINDOW_NORMAL)
#cv2.namedWindow("multiScaleSharpen image", cv2.WINDOW_NORMAL)
#cv2.namedWindow("Compare image", cv2.WINDOW_NORMAL)
#cv2.imshow("original image", img)
#cv2.imshow("multiScaleSharpen image", multiScaleSharpen_out)
#cv2.imshow("Compare image",hstack((img,multiScaleSharpen_out)))
cv2.imwrite("multiScaleSharpen_175_result.bmp", multiScaleSharpen_out)
#cv2.imwrite("multiScaleSharpen_128.jpg", multiScaleSharpen_out)
#cv2.waitKey(0) # 等待键盘触发事件,释放窗口
实验效果图
【转载】:https://blog.****.net/lz0499/article/details/82082481
https://blog.****.net/guyuealian/article/details/79065745
https://www.cnblogs.com/Imageshop/p/7895008.html