【吴恩达课后编程学习笔记】Course 1 - 第三周作业
抄了一遍带有一个隐藏层的平面数据分类
个人认为自己开展深度学习程序编写的话,主要难点就在下图了,也就是反向传播公式的推演了,所以抽几个重点公式推,不会用****的编辑器,直接截word笔记里的图了(还是MathType好用!!!
import numpy as np
import matplotlib.pyplot as plt
from testCase import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
np.random.seed(1)
X,Y=load_planar_dataset()
shape_X=X.shape
shape_Y=Y.shape
m=Y.shape[1]
print("X dimension:"+str(shape_X))
print("Y dimension:"+str(shape_Y))
print("number:"+str(m))
def layer_sizes(X,Y):
n_x=X.shape[0]
n_h=4
n_y=Y.shape[0]
return(n_x,n_h,n_y)
def initialize_parameters(n_x,n_h,n_y):
np.random.seed(2)
W1=np.random.randn(n_h,n_x)*0.01
b1=np.zeros(shape=(n_h,1))
W2=np.random.randn(n_y,n_h)*0.01
b2=np.zeros(shape=(n_y,1))
parameters={
"W1":W1,
"b1":b1,
"W2":W2,
"b2":b2}
return parameters
def forward_propagation(X,parameters):
W1=parameters["W1"]
b1=parameters["b1"]
W2=parameters["W2"]
b2=parameters["b2"]
Z1=np.dot(W1,X)+b1
A1=np.tanh(Z1)
Z2=np.dot(W2,A1)
A2=sigmoid(Z2)
cache={
"Z1":Z1,
"A1":A1,
"Z2":Z2,
"A2":A2}
return (A2,cache)
def compute_cost(A2,Y,parameters):
m=Y.shape[1]
W1=parameters["W1"]
W2=parameters["W2"]
logprobs=np.multiply(np.log(A2),Y)+np.multiply((1-Y),np.log(1-A2))
cost=-np.sum(logprobs)/m
cost=float(np.squeeze(cost))
return cost
def backward_propagation(parameters,cache,X,Y):
m=X.shape[1]
W1=parameters["W1"]
W2=parameters["W2"]
A1=cache["A1"]
A2=cache["A2"]
dZ2=A2-Y
dW2=(1/m)*np.dot(dZ2,A1.T)
#S'=S(1-S)
db2=(1/m)*np.sum(dZ2,axis=1,keepdims=True)
dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
#Tanh'=1-tanh^2
dW1=(1/m)*np.dot(dZ1,X.T)
db1=(1/m)*np.sum(dZ1,axis=1,keepdims=True)
grads={
"dW1":dW1,
"db1":db1,
"dW2":dW2,
"db2":db2
}
return grads
def update_parameters(parameters,learning_rate=1.2):
W1,W2=parameters["W1"],parameters["W2"]
b1,b2=parameters["b1"],parameters["b2"]
dW1,dW2=grads["dW1"],grads["dW2"]
db1,db2=grads["db1"],grads["db2"]
W1=W1-learning_rate*dW1
b1=b1-learning_rate*db1
W2=W2-learning_rate*dW2
b2=b2-learning_rate*db2
parameters={
"W1":W1,
"b1":b1,
"W2":W2,
"b2":b2}
return parameters
def nn_model(X,Y,n_h,num_iterations,print_cost=False):
np.random.seed(3)
n_x=layer_sizes(X,Y)[0]
n_y=layer_sizes(X,Y)[2]
parameters=initialize_parameters(n_x,n_h,n_y)
W1=parameters["W1"]
b1=parameters["b1"]
W2=parameters["W2"]
b2=parameters["b2"]
for i in range(num_iterations):
A2,cache=forward_propagation(X,parameters)
cost=compute_cost(A2,Y,parameters)
grads=backward_propagation(parameters,cache,X,Y)
parameters=update_parameters(parameters,grads,learning_rate=0.5)
if print_cost:
if i%1000==0:
print("第 ",i," 次循环,成本为:"+str(cost))
return parameters
def predict(parameters,X):
A2,cache=forward_propagation(X,parameters)
predictions=np.round(A2)
return predictions
parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')