标定相机参数-张正友方法

一、实验原理
1.计算外参
设三维世界坐标的点为M=[X,Y,Z,1]T,二维相机平面像素坐标为m=[u,v,1]T,所以标定用的棋盘格平面到图像平面的单应性关系为: sm=A[R,t]M
其中
标定相机参数-张正友方法
不妨设棋盘格位于Z = 0,定义旋转矩阵R的第i列为 ri, 则有:
标定相机参数-张正友方法
令H=[h1 h2 h3]=λA[r1 r2 t]
于是空间到图像的映射可改为: sm=HM,
其中H是描述Homographic矩阵,H是一个齐次矩阵,所以有8个未知数,至少需要8个方程,每对对应点能提供两个方程,所以至少需要四个对应点,就可以算出世界平面到图像平面的单应性矩阵H
标定相机参数-张正友方法
外参具体计算公式。注意:R3是 t
一般而言,求解出的R = [r1 r2 t] 不会满足正交与归一的标准
在实际操作中,R 可以通过SVD分解实现规范化(详见原文)

2.计算内参
由r1和r2正交,且r1和r2的模相等,可以得到如下约束:
标定相机参数-张正友方法
正交
模相等
可以推到出
标定相机参数-张正友方法
根据推到的结果可知如果有n组观察图像,则V 是 2n x 6 的矩阵
根据最小二乘定义,V b = 0 的解是 VTV 最小特征值对应的特征向量。
因此, 可以直接估算出 b,后续可以通过b求解内参
因为B中的未知量为6个,
所以当观测平面 n ≥ 3 时,可以得到b的唯一解
当 n = 2时, 一般可令畸变参数γ = 0
当 n = 1时, 仅能估算出α 与 β, 此时一般可假定像主点坐标 u0 与 v0 为0
内部参数可通过如下公式计算(cholesky分解):
内参具体计算公式
标定相机参数-张正友方法
3.最大似然估计
上述的推导结果是基于理想情况下的解,但由于可能存在高斯噪声,所以使用最大似然估计进行优化。设我们采集了n副包含棋盘格的图像进行定标,每个图像里有棋盘格角点m个。令第i副图像上的角点Mj在上述计算得到的摄像机矩阵下图像上的投影点为:
这里的K为相机内参矩阵A
其中Ri和ti是第i副图对应的旋转矩阵和平移向量,K是内参数矩阵。则角点mij的概率密度函数为:
这里的K为相机内参矩阵A
构造似然函数:
这里的K为相机内参矩阵A
让L取得最大值,即让下面式子最小。这里使用的是多参数非线性系统优化问题的Levenberg-Marquardt算法[2]进行迭代求最优解。
这里的K为相机内参矩阵A
4.径向畸变估计
张氏标定法只关注了影响最大的径向畸变。则数学表达式为:
其中,(u,v)是理想无畸变的像素坐标,(u,v)(u,v)是实际畸变后的像素坐标。(u0,v0)代表主点,(x,y)是理想无畸变的连续图像坐标,(x,y)(x,y)是实际畸变后的连续图像坐标。k1和k2为前两阶的畸变参数。
化作矩阵形式:
记做:Dk=d
则可得:
计算得到畸变系数k。
使用最大似然的思想优化得到的结果,即像上一步一样,LM法计算下列函数值最小的参数值:
这里的K为相机内参矩阵A
到此,张氏标定法介绍完毕。我们也得到了相机内参、外参和畸变系数。

二、实验步骤
1.打印一张棋盘格A4纸张(黑白间距已知),并贴在一个平板上
2.针对棋盘格拍摄若干张图片(一般10-20张)
3.在图片中检测特征点(Harris特征)
4.利用解析解估算方法计算出5个内部参数,以及6个外部参数
5.根据极大似然估计策略,设计优化目标并实现参数的refinement

三、实验结果
手机型号:iphone6sp
标定相机参数-张正友方法
棋盘是一块由黑白方块间隔组成的标定板,我们用它来作为相机标定的标定物(从真实世界映射到数字图像内的对象)。之所以我们用棋盘作为标定物是因为平面棋盘模式更容易处理(相对于复杂的三维物体),但与此同时,二维物体相对于三维物体会缺少一部分信息,于是我们会多次改变棋盘的方位来捕捉图像,以求获得更丰富的坐标信息。下面将依次对刚体进行一系列变换,使之从世界坐标系进行仿射变换、投影透射,最终得到像素坐标系下的离散图像点,过程中会逐步引入各参数矩阵。标定图片需要使用标定板在不同位置、不同角度、不同姿态下拍摄,最少需要3张,以10~20张为宜。标定板需要是黑白相间的矩形构成的棋盘图,制作精度要求较高。