高数打卡11

计算下列对坐标的曲面积分:
zdxdy+xdydz+ydzdx\iint_{\sum}zdxdy+xdydz+ydzdx
其中\sum是柱面x2+y2=1x^2+y^2=1被平面z=0z=0z=3z=3所截得的在第一卦限内的部分的前侧;

高数打卡11
由于柱面x2+y2=1x^2+y^2=1xOyxOy 面上的投影为0,0,因此zdxdy=0.\iint_{\sum}zdxdy=0.

Dyz={(y,z)0y1,0z3}Dzx={(x,z)0z3,0x1}D_{yz}=\{(y,z)|0\leq y\leq 1,0\leq z\leq 3\}\\ D_{zx}=\{(x,z)|0\leq z\leq 3,0\leq x\leq 1\}
\sum取前侧,故
zdxdy+xdydz+ydzdx=xdydz+ydzdx=Dyz1y2dydz+Dzx1yxdzdx=03dz011y2dy+03dz011x2dx=32π\iint_{\sum}zdxdy+xdydz+ydzdx=\iint_{\sum}xdydz+\iint_{\sum}ydzdx\\ =\iint_{D_{yz}}\sqrt{1-y^2}dydz+\iint_{D_{zx}}\sqrt{1-y^x}dzdx\\ =\int_{0}^{3}dz\int_{0}^{1}\sqrt{1-y^2}dy+\int_{0}^{3}dz\int_{0}^{1}\sqrt{1-x^2}dx\\ =\frac{3}{2}\pi