神经网络原理

转载请注明出处:http://blog.****.net/tyhj_sf/article/details/54134210
声明:
(1)该博文为个人学习总结,部分内容(包括数学公式)是来自书籍及网上的资料。具体引用的资料请看参考文献。具体的版本声明也参考原文献。
(2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的。如果某部分不小心侵犯了大家的版权,还望海涵,并联系本人删除或修改。

引言

最近谷歌升级版AlphaGo打败众多国内外围棋高手,那狗又火了一把,再次引起大家的关注。作为一个对技术有追求的人,嗯,是时候好好学习当前最火的人工智能与机器学习的相关技术了。学习一项技术,仅仅了解其技术原理是远远不够的,从技术实践中建立感性认识,才能对技术原理有深入的理解。因此,本文先介绍神经网络基本原理,后面系列文章将详细介绍神经网络的成熟算法及网络结构(比如:BP神经网络、RBF、CNN等)并编程实现之。

神经元模型

以监督学习为例,假设我们有训练样本集 (x(i),y(i)(x(i),y(i),可以以此参数来拟合我们的数据。
为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”构成,以下即是这个“神经元”的图示
神经网络原理

后文我们会介绍有多个神经元的神经网络,因此单个神经元模型我们后面会简化成如下图:
神经网络原理

这个“神经元”是一个以 x1,x2,x3x1,x2,x3

sigmoid函数:

f(z)=11+exp(z).f(z)=11+exp⁡(−z).

注意,这里我们不再令 x0=1x0=1 来表示截距。

最后要说明的是,有一个等式我们以后会经常用到:如果选择 f(z)=1/(1+exp(z))f(z)=1/(1+exp⁡(−z)) ,你可以根据sigmoid(或tanh)函数的定义自行推导这个等式。

神经网络模型

所谓神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。例如,下图就是一个简单的神经网络:
神经网络原理
我们使用蓝色圆圈来表示神经网络的输入,标上“+1+1”的圆圈被称为”’偏置节点”’,也就是截距项。神经网络最左边的一层叫做”’输入层”’,最右的一层叫做”’输出层”’(本例中,输出层只有一个节点)。中间所有节点组成的一层叫做”’隐藏层”’,因为我们不能在训练样本集中观测到它们的值。同时可以看到,以上神经网络的例子中有3个”’输入单元”’(偏置单元不计在内),3个”’隐藏单元”’及一个”’输出单元”’。

本例约定:
(1)我们用 nlnl 来计算输出结果。本例神经网络的计算步骤如下:

a(2)1a(2)2a(2)3hW,b(x)=f(W(1)11x1+W(1)12x2+W(1)13x3+b(1)1)=f(W(1)21x1+W(1)22x2+W(1)23x3+b(1)2)=f(W(1)31x1+W(1)32x2+W(1)33x3+b(1)3)=a(3)1=f(W(2)11a(2)1+W(2)12a(2)2+W(2)13a(2)3+b(2)1)a1(2)=f(W11(1)x1+W12(1)x2+W13(1)x3+b1(1))a2(2)=f(W21(1)x1+W22(1)x2+W23(1)x3+b2(1))a3(2)=f(W31(1)x1+W32(1)x2+W33(1)x3+b3(1))hW,b(x)=a1(3)=f(W11(2)a1(2)+W12(2)a2(2)+W13(2)a3(2)+b1(2))

(5)我们用 z(l)izi(l)

这样我们就可以得到一种更简洁的表示法。这里我们将**函数 f()f(⋅) ,那么,上面的等式可以更简洁地表示为:

z(2)a(2)z(3)hW,b(x)=W(1)x+b(1)=f(z(2))=W(2)a(2)+b(2)=a(3)=f(z(3))z(2)=W(1)x+b(1)a(2)=f(z(2))z(3)=W(2)a(2)+b(2)hW,b(x)=a(3)=f(z(3))

我们将上面的计算步骤叫作”前向传播(forward propagation)”。回想一下,之前我们用 a(1)=xa(1)=x 层的**值a(l+1)

转载请注明出处:http://blog.****.net/tyhj_sf/article/details/54134210
声明:
(1)该博文为个人学习总结,部分内容(包括数学公式)是来自书籍及网上的资料。具体引用的资料请看参考文献。具体的版本声明也参考原文献。
(2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的。如果某部分不小心侵犯了大家的版权,还望海涵,并联系本人删除或修改。