2728-最佳拟合直线-JAVA
最佳拟合直线
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
在很多情况下,天文观测得到的数据是一组包含很大数量的序列点图象,每一点用x值和y值定义。这就可能需要画一条通过这些点的最佳拟合曲线。
为了避免只对个别数据分析,需要进行最佳曲线拟合。考虑N个数据点,它们的坐标是(X1,Y1),(X2,Y2)...,(XN,YN)。假设这些值中的X是严格的精确值,Y的值是测量值(含有一些误差)。
对于一个给定的X,如X1,对应的值Y1与曲线C上对应的Y值将存在一个差值。我们用D1表示这个差值,有时我们也称这个差值为偏差、误差或残差,它可能是正、负或零。类似的,X2...,XN,对应的差值为D2,....,DN。
我们用D12 + D22 + ... + DN2 作为衡量曲线C拟合的“最佳”程度,这个值越小越好,越大则越不好。因此,我们做以下定义:任何一种类型的曲线,它们都有一个共同的特性,当ΣDi2最小时,称为最佳拟合曲线。注:∑指“取和”计算。 一条曲线具有这一特性时,称之为“最小二乘拟合”,这样的曲线称为“最小二乘曲线”。
本次的计算任务是拟合为一条直线,数学上称之为“线性回归”。“回归”一词看起来有点陌生,因为计算最佳曲线没什么好“回归”的,最好的术语就是“曲线似合”,在直线情况下就是“线性曲线拟合”。
你的任务是编写程序用最小二乘法计算出以下线性方程的系数(斜率a以及y轴的截距b):
y = a*x + b (4.1)
a和b可以使用以下公式计算:
式中N是数据点的个数。注意,以上两式具有相同的分母,∑指逐项加法计算(取和)。∑x指对所有的x值求和,∑y指对所以的y值求和,∑(x^2)指对所有x的平方求和。∑xy指对所有的积xy进行取和计算。应注意,∑xy 与 ∑x*∑y是不相同的(“积的和”与“和的积”是不同的),同样(∑x)^2与∑(x^2)也是不相同的(“和的平方”与“平方的和”是不相同的)。
Input
n组整数表示xi,yi ,期中|x|<=106,|y|<=106, n < 15
Output
最佳拟合曲线参数a和b,a和b各占一行,a 和b精确到小数点后3位。
Sample Input
4
1 6
2 5
3 7
4 10
Sample Output
1.400
3.500
Hint
Source
import java.text.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
DecimalFormat decimalFormat = new DecimalFormat("0.000");
while (scanner.hasNext()) {
int n = scanner.nextInt();
int x[] = new int[n];
int y[] = new int[n];
int xy[] = new int[n];
int xx[] = new int[n];
for (int i = 0; i < n; i++) {
x[i] = scanner.nextInt();
y[i] = scanner.nextInt();
xy[i] = x[i] * y[i];
xx[i] = x[i] * x[i];
}
double a = (n * sum(xy) - sum(x) * sum(y)) / (n * sum(xx) - sum(x) * sum(x));
double b = (sum(y) * sum(xx) - sum(x) * sum(xy)) / (n * sum(xx) - sum(x) * sum(x));
System.out.println(decimalFormat.format(a));
System.out.println(decimalFormat.format(b));
}
}
static public double sum(int a[]) {
double sum = 0;
for (int i = 0; i < a.length; i++) {
sum += a[i];
}
return sum;
}
}