linux进程通信
1.进程通信的目的
(1)数据传输,将数据从一个进程传送给另外一个进程
(2)共享数据,多个进程操作共享数据
(3)通知,如一个进程结束时需要通知父进程
(4)资源共享,需要引入锁机制
(5)有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变。
2.进程通信方式
(1)管道:管道是由内核管理的一个缓冲区,相当于我们放入内存中的一个纸条;管道是一个进程连接数据流到另一个进程的通道,它通常是用作把一个进程的输出通过管道连接到另一个进程的输入,例如shell脚本中的管道操作符,可分为匿名管道和命名管道,在匿名管道中,因此你通信的两个进程必须是父子关系,管道写函数通过将字节复制到 VFS 索引节点指向的物理内存而写入数据,而管道读函数则通过复制物理内存中的字节而读出数据,当然,内核必须利用一定的机制同步对管道的访问,为此,内核使用了锁、等待队列和信号。
FIFO (First in, First out)为一种特殊的文件类型,它在文件系统中有对应的路径。当一个进程以读(r)的方式打开该文件,而另一个进程以写(w)的方式打开该文件,那么内核就会在这两个进程之间建立管道,所以FIFO实际上也由内核管理,不与硬盘打交道。之所以叫FIFO,是因为管道本质上是一个先进先出的队列数据结构,最早放入的数据被最先读出来,从而保证信息交流的顺序。FIFO只是借用了文件系统(file
system,命名管道是一种特殊类型的文件,因为Linux中所有事物都是文件,它在文件系统中以文件名的形式存在。)来为管道命名。写模式的进程向FIFO文件中写入,而读模式的进程从FIFO文件中读出。当删除FIFO文件时,管道连接也随之消失。FIFO的好处在于我们可以通过文件的路径来识别管道,从而让没有亲缘关系的进程之间建立连接。
(2)信号
一个进程收到一个信号与处理器收到一个中断请求可以说是一样的。信号是进程间通信机制中唯一的异步通信机制,一个进程不必通过任何操作来等待信号的到达,事实上,进程也不知道信号到底什么时候到达。进程之间可以互相通过系统调用kill发送软中断信号。内核也可以因为内部事件而给进程发送信号,通知进程发生了某个事件。信号机制除了基本通知功能外,还可以传递附加信息。信号全称为软中断信号,也有人称作软中断。从它的命名可以看出,它的实质和使用很象中断,进程之间可以互相通过系统调用kill发送软中断信号。内核也可以因为内部事件而给进程发送信号,通知进程发生了某个事件。注意,信号只是用来通知某进程发生了什么事件,并不给该进程传递任何数据。
收到信号的进程对各种信号有不同的处理方法。处理方法可以分为三类:第一种是类似中断的处理程序,对于需要处理的信号,进程可以指定处理函数,由该函数来处理。第二种方法是,忽略某个信号,对该信号不做任何处理,就象未发生过一样。第三种方法是,对该信号的处理保留系统的默认值,这种缺省操作,对大部分的信 号的缺省操作是使得进程终止。进程通过系统调用signal来指定进程对某个信号的处理行为,linux中可通过kill -l 命令来查看由哪些信号 。
信号的生命周期与处理过程:信号产生->信号注册->信号在进程中注销->信号处理函数执行完毕,进程收到信号后并不是立即处理,而是在恰当的时候处理,信号处理的时机有内核空间返回到用户空间的前夕、进程在内核空间被唤醒、中断返回。
信号的处理过程:
每个进程都会采用一个进程控制块对其进行描述,进程控制块中设计了一个signal的位图信息,其中的每位与具体的signal相对应,这与中断机制是保持一致的。当系统中一个进程A通过signal系统调用向进程B发送signal时,设置进程B的对应signal位图,类似于触发了signal对应中断。发送signal只是“中断”触发的一个过程,具体执行会在两个阶段发生:
system call返回:进程B由于调用了system call后,从内核返回用户态时需要检查他拥有的signal位图信息表,此时是一个执行点。
中断返回:进程被系统中断打断之后,系统将CPU交给进程时,需要检查即将执行进程所拥有的signal位图信息表,此时也是一个执行点。
signal的执行点可以理解成从内核态返回用户态时,在返回时,如果发现待执行进程存在被触发的signal,那么在离开内核态之后(也就是将CPU切换到用户模式),执行用户进程为该signal绑定的signal处理函数,从这一点上看,signal处理函数是在用户进程上下文中执行的。当执行完signal处理函数之后,再返回到用户进程被中断或者system call(软中断或者指令陷阱)打断的地方。
(3)信号量:
信号量是用来调协进程对共享资源的访问的,其中共享内存的使用就要用到信号量。① 创建或打开消息队列。使用的函数是msgget(),这里创建的消息队列的数量会受到系统消息队列数量的限制。
② 添加消息。使用的函数是msgsnd(),它把消息添加到已打开的消息队列末尾。
③ 读取消息。使用的函数是msgrcv(),它把消息从消息队列中取走,与FIFO不同的是,这里可以取走指定的某一条消息。
④ 控制消息队列。使用的函数是msgctl(),它可以完成多项功能。
(5)共享内存
共享内存方式可以在多个进程直接共享数据,因为其直接使用内存,不要多余的拷贝,是速度最快的IPC方式;
共享内存有两种实现方式,使用mmap和shm方式
mmap方式是将文件与进程地址空间进行映射,对实际物理内存影响小
shm方式是将每个进程的共享内存与实际物理存储器进行映射,对实际物理内存影响大
共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式。两个不同进程A、B共享内存的意思是,同一块物理内存被映射到进程A、B各自的进程地址空间。
进程A可以即时看到进程B对共享内存中数据的更新,反之亦然。由于多个进程共享同一块内存区域,必然需要某种同步机制,互斥锁和信号量都可以。
采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。
对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,
而共享内存则只拷贝两次数据,一次从输入文件到共享内存区,另一次从共享内存区到输出文件,实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建 立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回 文件的。因此,采用共享内存的通信方式效率是非常高的。
(6)socket(套接字):
使用套接字除了可以实现网络间不同主机间的通信外,还可以实现同一主机的不同进程间的通信,且建立的通信是双向的通信。socket进程通信与网络通信使用的是统一套接口,只是地址结构与某些参数不同。