高数打卡06

线Lx2yzds,L线ABCD,A,B,C,D(0,0,0),(0,0,2),(1,0,2),(1,3,2).计算下列对弧长的曲线积分: \int_{L}x^2yzds,其中L为折线ABCD,这里A,B,C,D依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2).
解:高数打卡06
L线AB,BC,CDL由直线段AB,BC,CD组成,其中
AB:x=0,y=0,z=t(0t2);BC:x=t,y=0,z=2(0t1);CD:x=1,y=t,z=2(0t3).AB:x=0,y=0,z=t(0 \leq t \leq 2); \\ BC:x=t,y=0,z=2(0 \leq t \leq 1); \\ CD:x=1,y=t,z=2(0 \leq t \leq 3).
于是Lx2yzds=ABx2yzds+BCx2yzds+CDx2yzds=020dt+010dt+032tdt=9.\int_{L}x^2yzds=\int_{AB}x^2yzds+\int_{BC}x^2yzds+\int_{CD}x^2yzds \\ =\int_{0}^{2}0dt+\int_{0}^{1}0dt+\int_{0}^{3}2tdt=9.