【数学】张宇概率论九讲笔记

随机事件与概率

【数学】张宇概率论九讲笔记
1.Anr=n(n1)(nr+1)nrCnr=n!(nr)!r!=Anrr!nr2.P(AB)=P(A)+P(B)P(AB)P(AB)=P(A)P(AB)P(AB)+P(A)P(BA)P(A)=i=1nP(Bi)P(ABi)P(AjB)=P(AjB)P(B)=P(Aj)P(BAj)i=1nP(Ai)P(BAi)3.P(BA)=P(AB)P(A)    P(AB)=P(A)P(BA)4.P(AB)=P(A)P(B)5.P(X=k)=CNKpk(1p)nk \begin{aligned} 1.&\color{red}{排列组合}\\ &排列A_n^r=n(n-1)\cdots(n-r+1)\\ &从n个不同的元素中任取r个,按一定顺序排成一列\\ &组合C_n^r=\frac{n!}{(n-r)!r!}=\frac{A_n^r}{r!}\\ &从n个不同的元素中任取r个,不计顺序排成一组\\ 2.&\color{red}{五大公式}\\ &加法公式:P(A\cup B)=P(A)+P(B)-P(AB)\\ &减法公式:P(A-B)=P(A)-P(AB)\\ &乘法公式:P(AB)+P(A)P(B|A)\\ &全概率公式:P(A)=\sum_{i=1}^nP(B_i)P(A|B_i)\\ &逆概率公式:P(A_j|B)=\frac{P(A_jB)}{P(B)}=\frac{P(A_j)P(B|A_j)}{\sum_{i=1}^nP(A_i)P(B|A_i)}\\ 3.&\color{red}{条件概率}\\ &P(B|A)=\frac{P(AB)}{P(A)}\implies P(AB)=P(A)\cdot P(B|A)\\ 4.&\color{red}{独立}\\ &P(AB)=P(A)P(B)\\ 5.&\color{red}{伯努利试验}\\ &P(X=k)=C_N^Kp^k(1-p)^{n-k}\\ \end{aligned}

一维随机变量及分布

【数学】张宇概率论九讲笔记

分布函数的性质

1.limxF(x)=0,F()=0,limx+F(x)=1,F(+)=12.F(x)3.F(x)F(x+0)=F(x)xDP(xD)=Df(x)dx \begin{aligned} &1.\lim_{x\to-\infty}F(x)=0,记为F(-\infty)=0,\lim_{x\to+\infty}F(x)=1,记为F(+\infty)=1\\ &2.F(x)是单调非减函数\\ &3.F(x)是右连续函数,F(x+0)=F(x)\\ &若x\in D为一随机事件,则其概率为P(x\in D)=\int_Df(x)dx\\ \end{aligned}

离散型随机变量的分布律与分布函数

x123P0.10.50.4F(x)={0,x<10.1,1x<20.6,2x<31,3x \begin{aligned} & \begin{array}{c|c|c|c} x & 1 & 2 & 3 \\ \hline P & 0.1 & 0.5 & 0.4 \end{array}\\ &F(x)=\begin{cases}0,x<1\\0.1,1\leq x<2\\0.6,2\leq x<3\\1,3\leq x\end{cases} \end{aligned}

连续型随机变量的性质

1.f(x)02.+f(x)dx=13.x1<x2,P(x1<xx2)=x1x2f(t)dt4.f(x)F(x)=f(x){0+xnexdx=n!+ex2dx=π \begin{aligned} &1.f(x)\geq0\\ &2.\int_{-\infty}^{+\infty}f(x)dx=1\\ &3.对于\forall x_1< x_2,P(x_1< x\leq x_2)=\int_{x_1}^{x_2}f(t)dt\\ &4.f(x)在连续点处可导,即F'(x)=f(x)\\ &常考的两个积分\begin{cases}\int_0^{+\infty}x^ne^{-x}dx=n!\\\int_{-\infty}^{+\infty}e^{-x^2}dx=\sqrt\pi\end{cases} \end{aligned}

常见分布

01P(X=k)=Cnkpk(1p)nkP(X=k)=λkeλk!01XB(1,p)XB(n,p)XP(λ)ppλnknkEXpnpλDXp(1p)np(1p)λf(x)={1ba,axb0,f(x)={λeλx,x>00,x0(λ>0)f(x)=12πσe(xμ)22σ2XU[a,b]XE(λ)XN(μ,σ2)a,bλμ,σ使寿EXa+b21λμDX(ba)2121σ2σ2P(x>t)=eλt(t>0)XN(0,1)φ(x)=12πex22 \begin{aligned} &\color{red}{离散型}\\ & \begin{array}{c|c|c|c} 定义 & 0与1 & P(X=k)=C_n^kp^k(1-p)^{n-k} & P(X=k)=\frac{\lambda^ke^{-\lambda}}{k!} \\ \hline 称呼 & 0-1分布 & 二项分布 & 泊松分布 \\\hline 记号 & X\sim B(1,p) & X\sim B(n,p) & X\sim P(\lambda) \\\hline 参数 & p & p & \lambda\\\hline 背景 & 一次伯努利试验成功或失败的次数 & n次伯努利试验成功k次,失败n-k次 & 例如每天收到电话、短信的次数\\\hline EX & p & np & \lambda \\\hline DX & p(1-p) & np(1-p) & \lambda \\ \end{array}\\ &\color{red}{连续型}\\ & \begin{array}{c|c|c|c} 定义 & f(x)=\begin{cases}\frac1{b-a},a\leq x\leq b\\0,其他\end{cases} & f(x)=\begin{cases}\lambda e^{-\lambda x},x>0\\0,x\leq 0\end{cases}(\lambda>0) & f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \\ \hline 称呼 & 均匀分布 & 指数分布 & 正态分布 \\\hline 记号 & X\sim U[a,b] & X\sim E(\lambda) & X\sim N(\mu,\sigma^2) \\\hline 参数 & a,b & \lambda & \mu,\sigma\\\hline 背景 & 等公交、地铁、电梯 & 反映使用寿命、生命特征的现象 & 考试成绩的分布\\\hline EX & \frac{a+b}2 & \frac1\lambda & \mu \\\hline DX & \frac{(b-a)^2}{12} & \frac1{\sigma^2} & \sigma^2 \\\hline 特殊 & & P(x>t)=e^{-\lambda t}(t>0) & X\sim N(0,1)\to\varphi(x)=\frac1{\sqrt{2\pi}}e^{-\frac{x^2}2} \end{array} \end{aligned}

期望方差

:E(x)=+xd[F(x)]={ixipi,Xxf(x)dx,XXg(x)E(g(X))={ig(xi)pi,Xg(x)f(x)dx,X:E(c)=CE(cX)=CE(X)E(X+Y)=E(X)+E(Y)E(XY)=E(X)E(Y):D(X)=E[XE(X)]2={i[xiE(X)]2pi,X+[xE(X)]2f(x)dx,X:D(c)=0D(cX)=C2D(X)D(X+Y)=D(X)+D(Y)2E{[XE(X)][YE(Y)]}D(X)=e(X2)[E(X)]2D(X+Y)=D(X)+D(Y)() \begin{aligned} 期望:&E(x)=\int_{-\infty}^{+\infty}xd[F(x)]=\begin{cases}\sum_ix_ip_i,X为离散型随机变量\\\int_{-\infty}^{\infty}xf(x)dx,X为连续型随机变量\end{cases}\\ &若随机变量X的概率分布已知,则随机变量函数g(x)的数学期望为E(g(X))=\begin{cases}\sum_ig(x_i)p_i,X为离散型\\\int_{-\infty}^{\infty}g(x)f(x)dx,X为连续型\end{cases}\\ 性质:&E(c)=C\quad E(cX)=CE(X)\quad E(X+Y)=E(X)+E(Y)\quad E(XY)=E(X)E(Y)\\ 方差:&D(X)=E[X-E(X)]^2=\begin{cases}\sum_i[x_i-E(X)]^2p_i,当X为离散型时\\\int_{-\infty}^{+\infty}[x-E(X)]^2f(x)dx,当X为连续型时\end{cases}\\ 性质:&D(c)=0\quad D(cX)=C^2D(X)\\ &D(X+Y)=D(X)+D(Y)-2E\{[X-E(X)][Y-E(Y)]\}\\ &D(X)=e(X^2)-[E(X)]^2\quad D(X+Y)=D(X)+D(Y)(独立) \end{aligned}

宇哥笔记

随机事件与概率

古典概型

定义

 []ΩP(A)=AΩ[]1.(E)2.Ωω[]P()=12 \begin{aligned} \ [定义]&若\Omega中有有限个、等可能的样本点,称为古典概型\\ &即P(A)=\frac{A中样本点个数}{\Omega中样本点数}\\ [注]&1.试验(E)同条件下可重复;试验结果不止一个;试验前不知哪个结果会出现\\ &2.\Omega——样本空间——所有可能结果;\omega——样本点\\ [例]&P(掷出奇数点)=\frac12\\ \end{aligned}

随机分配(占位)

 []nN(nN)(1)A={n}(2)B={n}(1)P(A)=n(n1)(n2)1Nn=n!Nn(2)P(B)=CNnn!Nn[]:12365(1)A={}    P(A)=12!36512(2)B={}    P(B)=C3651212!36512B={}    P(B)=1P(B) \begin{aligned} \ [例]&\color{maroon}设n个球随机放入N(n\leq N)个盒子中,每个盒子可放任意多个球,求\\ &\color{maroon}(1)A=\{某指定n个盒子各有一球\}\\ &\color{maroon}(2)B=\{恰有n个盒子各有一球\}\\ &(1)P(A)=\frac{n\cdot(n-1)(n-2)\cdots1}{N^n}=\frac{n!}{N^n}\\ &(2)P(B)=\frac{C_N^n\cdot n!}{N^n}\\ [注]&类比:12个人,每个人在365天出生等可能\\ &(1)A=\{生日分别为每个月的第一天\}\implies P(A)=\frac{12!}{365^{12}}\\ &(2)B=\{生日全不相同\}\implies P(B)=\frac{C_{365}^{12}\cdot 12!}{365^{12}}\\ &\quad \overline{B}=\{至少两个人生日相同\}\implies P(\overline{B})=1-P(B)\\ \end{aligned}

简单随机抽样

 []532(1)2(2)2(3)22(1)P1=522252=2125(2)P2=542154=910(3)P3=C52C22C52=910[]kk \begin{aligned} \ [例]&\color{maroon}袋中有5个球,3白2黑\\ &\color{maroon}(1)先后有放回取2个球\\ &\color{maroon}(2)先后无放回取2个球\\ &\color{maroon}(3)任取2个球\\ &\color{maroon}求取的2球中至少一个白球的概率\\ &\color{maroon}算‘两球全黑’,用总数减去它\\ &(1)P_1=\frac{5^2-2^2}{5^2}=\frac{21}{25}\\ &(2)P_2=\frac{5\cdot4-2\cdot1}{5\cdot4}=\frac{9}{10}\\ &(3)P_3=\frac{C_5^2-C_2^2}{C_5^2}=\frac{9}{10}\\ [注]&'先后无放回取k个球'与'任取k个球'概率相等,后者好算\\ \end{aligned}

几何概型

 []ΩΩAAA,P(A)=AΩ[]AP(A)=AΩ[]x,y1xy10.09.SA=0.10.9[1x0.09x]dx=0.8x220.10.90.09lnx0.10.9=0.80.40.18ln30.2P(A)=SASΩ=20% \begin{aligned} \ [定义]&若\Omega是一个可度量的几何区域,且样本点落入\Omega中的某一可度量子区域A的可能性大小与A的几何度量成正比,\\ &而与A的位置、形状无关,称为几何概型,即P(A)=\frac{A的度量}{\Omega的度量}\\ [引例]&天上掉馅饼于操场上,拿一个饭盆A去接这个馅饼,P(A)=\frac{A的面积}{\Omega的面积}\\ [例]&\color{maroon}随机取两个正数x,y,这两个数中的每一个都不超过1,求x与y之和不超过1,积不小于0.09的概率.\\ &S_A=\int_{0.1}^{0.9}[1-x-\frac{0.09}{x}]dx=0.8-\frac{x^2}2|_{0.1}^{0.9}-0.09\ln x | _{0.1}^{0.9}=0.8-0.4-0.18\cdot\ln3\approx0.2\\ &P(A)=\frac{S_A}{S_\Omega}=20\% \end{aligned}

重要公式

 []1. P(A)=1P(A)2. P(AB)=P(AB)=P(A)P(AB)(AB)3. (1)P(A+B)=P(A)+P(B)P(AB)(2)P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)[]1.A1,A2, ,An(n>3)    P(i=1nAi)=i=1nP(Ai)2.A1,A2, ,An(n>3),Ai1,Ai2, ,Aik(k2),P(Ai1Ai2Aik)=P(Ai1)P(Ai2)P(Aik)    A1,A2, ,Ann    A,B    A,B    A,B    A,Bn=3,A1,A2,A3,{P(A1A2)=P(A1)P(A2)P(A1A3)=P(A1)P(A3)P(A2A3)=P(A2)P(A3)P(A1A2A3)=P(A1)P(A2)P(A3)A1,A2, ,AnP(i=1nAi)=1P(i=1nAi)=1P(i=1nAi)=1i=1n[1P(Ai)]A1,A2, ,An4. P(AB)=P(AB)P(B),P(B)>05. P(AB)={P(B)P(AB),P(B)>0P(A)P(BA),P(A)>0P(A1A2A3)=P(A1)P(A2A1)P(A3A1A2)6.[]A1,A2,A3,P(B)=P{}{1.A1,A2,A32.,BP(B)=P(BΩ)=P(B(A1A2A3))=P(BA1BA2BA3)=P(BA1)+P(BA2)+P(BA3)=P(A1)P(BA1)+P(A2)P(BA2)+P(A3)P(BA3)P(B)=i=1nP(Ai)P(BAi)7. BP(AjB)=P(AjB)P(B)=P(Aj)P(BAj)i=1nP(Ai)P(BAi) \begin{aligned} \ [公式]1.&对立\ P(A)=1-P(\overline{A})\\ 2.&减法\ P(A\overline{B})=P(A-B)=P(A)-P(AB)(A发生且B不发生)\\ 3.&加法\ (1)P(A+B)=P(A)+P(B)-P(AB)\\ &(2)P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)\\ &[注]\color{grey}1.若A_1,A_2,\cdots,A_n(n>3)两两互斥\implies P(\bigcup_{i=1}^nA_i)=\sum_{i=1}^nP(A_i)\\ &\color{grey}2.设A_1,A_2,\cdots,A_n(n>3),若对其中任意有限个A_{i1},A_{i2},\cdots,A_{ik}(k\geq2),\\ &\color{grey}都有P(A_{i1}A_{i2}\cdots A_{ik})=P(A_{i1})P(A_{i2})\cdots P(A_{ik})\implies A_1,A_2,\cdots,A_n相互独立\\ &\color{grey}且'夫唱妇随',即:n个事件相互独立\iff A,B独立\iff\overline{A},\overline{B}独立\iff\overline{A},B独立\iff A,\overline{B}独立\\ &\color{grey}n=3,A_1,A_2,A_3,有\begin{cases}P(A_1A_2)=P(A_1)P(A_2)\\P(A_1A_3)=P(A_1)P(A_3)\\P(A_2A_3)=P(A_2)P(A_3)\\P(A_1A_2A_3)=P(A_1)P(A_2)P(A_3)\end{cases}相互独立\\ &\color{grey}若上者只成立前三条,则称为两两独立\\ &\color{grey}于是若A_1,A_2,\cdots,A_n相互独立,则P(\bigcup_{i=1}^nA_i)=1-P(\bigcup_{i=1}^nA_i)=1-P(\bigcap_{i=1}^n\overline{A_i})=1-\prod_{i=1}^n[1-P(A_i)]\\ &\color{grey}即\overline{A_1},\overline{A_2},\cdots,\overline{A_n}相互独立\\ 4.&条件概率\ P(A\mid B)=\frac{P(AB)}{P(B)},P(B)>0\\ 5.&乘法\ P(AB)=\begin{cases}P(B)P(A\mid B),P(B)>0\\P(A)P(B\mid A),P(A)>0\end{cases}\\ &P(A_1A_2A_3)=P(A_1)P(A_2\mid A_1)P(A_3\mid A_1A_2)\\ 6.&全集分解公式(全概率公式)\\ &[引例]一个村子有且仅有三个小偷A_1,A_2,A_3,求P(B)=P\{失窃\}\\ &分成两个阶段\begin{cases}1.选人A_1,A_2,A_3\\2.去偷,B\end{cases}\\ &则P(B)=P(B\Omega)=P(B\cap(A_1\cup A_2\cup A_3))\\ &=P(BA_1\cup BA_2\cup BA_3)=P(BA_1)+P(BA_2)+P(BA_3)\\ &=P(A_1)P(B\mid A_1)+P(A_2)P(B\mid A_2)+P(A_3)P(B\mid A_3)\\ &故P(B)=\sum_{i=1}^nP(A_i)P(B\mid A_i)\\ 7.&贝叶斯公式(逆概率公式)\ 若B发生了,执果索因\\ &P(A_j\mid B)=\frac{P(A_jB)}{P(B)}=\frac{P(A_j)P(B\mid A_j)}{\sum_{i=1}^nP(A_i)P(B\mid A_i)} \end{aligned}

 [1]D(A)0<P(B)<1,P(AB)+P(AB)=1(B)A,BP(BA)=1,P(AB)=0(C)(AB)B=AB(D)A,BCP(C)<P(A)+P(B)1(A) P(AB)P(B)+P(AB)P(B)=P(AB)P(B)+1P(A+B)1P(B)=P(AB)P(B)+1P(A)P(B)+P(AB)1P(B)=P(AB)P(AB)P(B)+P(B)P(A)P(B)[P(B)]2+P(B)P(AB)P(B)[1P(B)]=1    P(AB)+P(B)P(A)P(B)[P(B)]2=P(B)[P(B)]2    P(AB)=P(A)P(B)(B) P(AB)P(A)=1    P(AB)=P(A)    P(AB)=P(A)P(AB)=0(C) (AB)B=(AB)B=(AB)(BB)=AB(D) P(AB)P(C)    P(A)+P(B)P(A+B)P(C)    P(A)+P(B)P(A+B)P(A)+P(B)1    P(C)P(A)+P(B)1[2]0.6,0.5,(1)(2)(1){1.AA2.=BP(AB)=P(A)P(BA)P(A)P(BA)+P(A)P(BA)=120.6120.6+120.5=611(2)P(AB)=P(AB)P(B)=P(A)P(A)+P(A)P(AA)=0.60.6+0.50.60.5=34[3]240,1,280%,15%,5%,4,(1)(2)(1)Ai={i}.i=0,1,2.P(A0)=0.8,P(A1)=0.15,P(A2)=0.05{1.2.4BorBP(B)=P(A0)P(BA0)+P(A1)P(BA1)+P(A2)P(BA2)=0.81+0.15C234C244+0.05C224C2440.96(2)P(A0B)=0.80.960.83 \begin{aligned} \ [例1]&\color{maroon}以下结论,错误的是(D)?\\ &\color{maroon}(A)若0< P(B)< 1,P(A\mid B)+P(\overline{A}\mid\overline{B})=1\\ &\color{maroon}(B)若A,B满足P(B\mid A)=1,则P(A-B)=0\\ &\color{maroon}(C)(A-B)\cup B=A\cup B\\ &\color{maroon}(D)若A,B同时发生时,C必发生,则P(C)< P(A)+P(B)-1\\ &(A)\ \frac{P(AB)}{P(B)}+\frac{P(\overline{A}\overline{B})}{P(\overline{B})}=\frac{P(AB)}{P(B)}+\frac{1-P(A+B)}{1-P(B)}=\frac{P(AB)}{P(B)}+\frac{1-P(A)-P(B)+P(AB)}{1-P(B)}\\ &=\frac{P(AB)-P(AB)P(B)+P(B)-P(A)P(B)-[P(B)]^2+P(B)P(AB)}{P(B)[1-P(B)]}=1\\ &\implies P(AB)+P(B)-P(A)P(B)-[P(B)]^2=P(B)-[P(B)]^2\implies P(AB)=P(A)P(B)\\ &(B)\ \frac{P(AB)}{P(A)}=1\implies P(AB)=P(A)\\ &\implies P(A-B)=P(A)-P(AB)=0\\ &(C)\ (A\overline{B})\cup B=(A\cap \overline{B})\cup B=(A\cup B)\cap(\overline{B}\cup B)=A\cup B\\ &(D)\ P(AB)\leq P(C)\implies P(A)+P(B)-P(A+B)\leq P(C)\\ &\implies P(A)+P(B)-P(A+B)\geq P(A)+P(B)-1\implies P(C)\geq P(A)+P(B)-1\\ [例2]&\color{maroon}设有甲、乙两名运动员,甲命中目标的概率为0.6,乙命中目标的概率为0.5,求下列概率。\\ &\color{maroon}(1)从甲、乙中任选一人取射击,若目标被命中,则是甲命中的概率是多少?\\ &\color{maroon}(2)甲、乙各自独立射击,若目标被命中,则是甲命中的概率?\\ &(1)分两个阶段\begin{cases}1.选人,A_甲,A_乙\\2.射击,命中=B\end{cases}\\ &P(A_甲\mid B)=\frac{P(A_甲)P(B\mid A_甲)}{P(A_甲)P(B\mid A_甲)+P(A_乙)P(B\mid A_乙)}\\ &=\frac{\frac12\cdot0.6}{\frac12\cdot0.6+\frac12\cdot0.5}=\frac6{11}\\ &(2)P(A_甲\mid B)=\frac{P(A_甲B)}{P(B)}=\frac{P(A_甲)}{P(A_甲)+P(A_乙)-P(A_甲A_乙)}=\frac{0.6}{0.6+0.5-0.6\cdot0.5}=\frac34\\ [例3]&\color{maroon}每箱有24只产品,每箱含0,1,2件残品的箱各占80\%, 15\%, 5\%,现随机抽一箱,随即检验其中4只,\\ &\color{maroon}若未发现残品则通过验收,否则要逐一检验并更换,求\\ &\color{maroon}(1)一次通过验收的概率\\ &\color{maroon}(2)通过验收的箱中确无残品的概率\\ &(1)记A_i=\{抽取的一箱中含i件残品\}.i=0,1,2.\\ &但P(A_0)=0.8,P(A_1)=0.15,P(A_2)=0.05\\ &分阶段\begin{cases}1.取箱子\\2.取4只检验,收为Bor不收为\overline{B}\end{cases}\\ &P(B)=P(A_0)P(B\mid A_0)+P(A_1)P(B\mid A_1)+P(A_2)P(B\mid A_2)\\ &=0.8\cdot1+0.15\cdot\frac{C_{23}^4}{C_{24}^4}+0.05\cdot\frac{C_{22}^4}{C_{24}^4}\approx0.96\\ &(2)P(A_0\mid B)=\frac{0.8}{0.96}\approx0.83 \end{aligned}

一维随机变量及其分布

随机变量与分布函数

(1)r,v()Ω={ω}X=X(ω),ωΩ(2)F(x)=P{Xx},<x<+. \begin{aligned} &(1)r,v(随机变量)\quad 定义在\Omega=\{\omega\}上,取值在实数轴上的变量。即X=X(\omega),\omega\in\Omega\\ &(2)分布函数F(x)=P\{X\leq x\},其中-\infty< x<+\infty. \end{aligned}

离散型随机变量

 []x[]x(x1x2xnP1P2Pn)F(x)=P{Xx},r,v     \begin{aligned} \ [定义]&x取有限个或无穷可列个值\\ [分布律]&x\sim\begin{pmatrix}x_1&x_2&\cdots&x_n&\cdots\\P_1&P_2&\cdots&P_n&\cdots\end{pmatrix}\\ &F(x)=P\{X\leq x\},离散型r,v\iff 步步高的阶梯形函数\\ \end{aligned}

连续型随机变量

 []f(x),使x(,+),F(x)=xf(t)dt,xr,v.f(x)[]F(x)=P{Xx}={xf(t)dt,xixPi, \begin{aligned} \ [定义]&若存在非负可积函数f(x),使得\forall x\in(-\infty,+\infty),有F(x)=\int_{-\infty}^xf(t)dt,则称x为连续型r,v.f(x)叫概率密度\\ [注]&F(x)=P\{X\leq x\}=\begin{cases}\int_{-\infty}^xf(t)dt,连续型\\\sum_{x_i\leq x}P_i,离散型\end{cases}\\ \end{aligned}

X~F(x)

XF(x){Pif(x)(1)F(x)X    {1.2.F()=0,F(+)=13.()(2){Pi}    {1.Pi02.iPi=1(3)f(x)    {1.f(x)02.+f(x)dx=1 \begin{aligned} &X\sim F(x)\begin{cases}P_i\to分布律\\f(x)\to概率密度\end{cases}\\ &(1)F(x)是某个X的分布函数\iff\begin{cases}1.单调不减\\2.F(-\infty)=0,F(+\infty)=1\\3.右连续(等号跟着大于号)\end{cases}\\ &(2)\{P_i\}是分布律\iff\begin{cases}1.P_i\geq0\\2.\sum_iP_i=1\end{cases}\\ &(3)f(x)是概率密度\iff\begin{cases}1.f(x)\geq0\\2.\int_{-\infty}^{+\infty}f(x)dx=1\end{cases}\\ \end{aligned}

八个常见分布

(1)(5)(6)(8)(1)01X(10P1P)(2){1.2.P(A)=P3.A,A,XA,P{x=k}=CnkPk(1P)nk,k=0,1, ,n    XB(n,P)(3)X    P{x=k}=P1(1P)k1,k=1,2,(4)NMNMnP{x=k}=CMkCNMnkCNn(5),PP{X=k}=λkk!eλ,{λk=0,1,(6)Xf(x)={1ba,axb0,,XU[a,b][]XIXU(I)(7)Xf(x)={λeλx,x>00,x0,XE(λ),λ[] P{Xt+sXt}=P{xs}F(x)=P{Xx}=xf(t)dt={1eλx,x00,x<0{(8)Xf(x)=12πσe(xμ)22σ2,<x<+[]μ=0,σ2=1    XN(0,1)Xφ(x)=12πex22XΦ(x)=x12πet22dt \begin{aligned} &(1)-(5)离散型\quad(6)-(8)连续型\\ (1)&0-1分布\quad X\sim\begin{pmatrix}1&0\\P&1-P\end{pmatrix}\\ (2)&二项分布\quad \begin{cases}1.独立\\2.P(A)=P\\3.只有A,\overline{A},非白即黑\end{cases}\\ &记X为A发生的次数,P\{x=k\}=C_n^kP^k(1-P)^{n-k},k=0,1,\cdots,n\\ &\implies X\sim B(n,P)\\ (3)&几何分布\quad 与几何无关,首中即停止,记X为试验次数\implies P\{x=k\}=P^1(1-P)^{k-1},k=1,2,\cdots\\ (4)&超几何分布\quad 古典概型,设N件产品,M、件正品,N-M件次品,无放回取n次,则P\{x=k\}=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n}\\ (5)&泊松分布\quad某时间段内,某场合下,源源不断的质点来流的个数,也常用于描述稀有事件的P\\ &P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},\begin{cases}\lambda--强度\\k=0,1,\cdots\end{cases}\\ (6)&均匀分布\quad 对比几何概型,若X\sim f(x)=\begin{cases}\frac1{b-a},a\leq x\leq b\\0,其他\end{cases},称X\sim U[a,b]\\ &[注]高档次说法:“X在I上的任意子区间取值的概率与该子区间长度成正比”\to X\sim U(I)\\ (7)&指数分布\quad X\sim f(x)=\begin{cases}\lambda e^{-\lambda x},x>0\\0,x\leq0\end{cases},称X\sim E(\lambda),\lambda--失效率\\ &[注]无记忆性\ P\{X\geq t+s\mid X\geq t\}=P\{x\geq s\}\\ &F(x)=P\{X\leq x\}=\int_{-\infty}^xf(t)dt=\begin{cases}1-e^{-\lambda x},x\geq0\\0,x< 0\end{cases}\\ &\begin{cases}几何分布,离散性等待分布\\指数分布,连续性等待分布\end{cases}\\ (8)&正态分布\quad X\sim f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},-\infty< x< +\infty\\ &[注]若\mu=0,\sigma^2=1\implies X\sim N(0,1)\\ &X\sim\varphi(x)=\frac1{\sqrt{2\pi}}e^{-\frac{x^2}2}\\ &X\sim\Phi(x)=\int_{-\infty}^x\frac1{\sqrt{2\pi}}e^{-\frac{t^2}2}dt\\ \end{aligned}

 [1]XF(x),f(x)=af1(x)+bf2(x),f1(x)N(0,σ2),f2(x)E(λ)F(0)=18,a=,b=1.+f(x)dx=a+f1(x)dx+b+f2(x)dx    1=a+b2.F(0)=0f(x)dx=a0f1(x)dx+b0f2(x)dx=18a12+b0=18    a=14    b=34[2]Xf(x)={Aex,x>λ0,,λ>0,P{λ<X<λ+a}(a>0)+f(x)dx=1    λ+Aexdx=1    Aex+λ=Aeλ=1    A=eλ    P{λ<X<λ+a}=λλ+aeλexdx=eλ[ex]λ+aλ=eλ(eλe(λ+a))=1eaλa[3]XE(λ),X278,λ=Y={X2}    YB(3,P)P={X>2}=2+f(x)dx=1P{X2}=1F(2)=1[1e2λ]=e2λP{Y1}=78=1P{Y=0}=1(1P)3=1(1e2λ)3    e2λ=12    λ=12ln12=12ln2[4]XE(λ)Y=1eλxfY(y)XfX(x),Y=g(X),fY(y)1.FY(y)=P{Yy}=P{g(X)y}=P{XIy}=Iyfx(x)dx2.fY(y)=FY(y)1.FY(y)=P{Yy}=P{1eλxy}(1)y<0    FY(y)=0(2)y1    FY(y)=1(3)0y1    FY(y)=P{0X1λln(1y)}=FX(1λln(1y))=1eλ[1λln(1y)]2.fY(y)={1,0y<10, \begin{aligned} \ [例1]&\color{maroon}设X\sim F(x),f(x)=af_1(x)+bf_2(x),f_1(x)\sim N(0,\sigma^2),f_2(x)\sim E(\lambda)\\ &\color{maroon}F(0)=\frac18,则a=\underline{\quad},b=\underline{\quad}\\ &1.\int_{-\infty}^{+\infty}f(x)dx=a\int_{-\infty}^{+\infty}f_1(x)dx+b\int_{-\infty}^{+\infty}f_2(x)dx\implies 1=a+b\\ &2.F(0)=\int_{-\infty}^0f(x)dx=a\int_{-\infty}^{0}f_1(x)dx+b\int_{-\infty}^{0}f_2(x)dx=\frac18\\ &即a\cdot\frac12+b\cdot0=\frac18\implies a=\frac14\implies b=\frac34\\ [例2]&\color{maroon}X\sim f(x)=\begin{cases}Ae^{-x},x>\lambda\\0,其他\end{cases},\lambda>0,P\{\lambda< X< \lambda+a\}(a>0)的值\\ &\int_{-\infty}^{+\infty}f(x)dx=1\implies \int_{\lambda}^{+\infty}Ae^{-x}dx=1\implies A\cdot e^{-x}\mid^\lambda_{+\infty}=Ae^{-\lambda}=1\implies A=e^{\lambda}\\ &\implies P\{\lambda< X< \lambda+a\}=\int_{\lambda}^{\lambda+a}e^{\lambda}\cdot e^{-x}dx=e^{\lambda}[e^{-x}]\mid^{\lambda}_{\lambda+a}=e^{\lambda}\cdot(e^{-\lambda}-e^{-(\lambda+a)})=1-e^{-a}\\ &故其值与\lambda无关,随着a的增大其概率增大\\ [例3]&\color{maroon}X\sim E(\lambda),对X作三次独立重复观察,至少有一次观测值大于2的概率为\frac78,则\lambda=\underline{\quad}\\ &记Y=\{对X作三次独立重复观察中观测值大于2发生的次数\}\implies Y\sim B(3,P)\\ &其中P=\{X>2\}=\int_2^{+\infty}f(x)dx=1-P\{X\leq2\}=1-F(2)=1-[1-e^{-2\lambda}]=e^{-2\lambda}\\ &由题意,得P\{Y\geq1\}=\frac78=1-P\{Y=0\}=1-(1-P)^3=1-(1-e^{-2\lambda})^3\\ &\implies e^{-2\lambda}=\frac12\implies \lambda=-\frac12\ln\frac12=\frac12\ln2\\ [例4]&\color{maroon}X\sim E(\lambda)求Y=1-e^{-\lambda x}\sim f_Y(y)\\ &X\sim f_X(x),Y=g(X),求f_Y(y)\\ &1.F_Y(y)=P\{Y\leq y\}=P\{g(X)\leq y\}=P\{X\in I_y\}=\int_{I_y}f_x(x)dx\\ &2.f_Y(y)=F_Y'(y)\\ &1.F_Y(y)=P\{Y\leq y\}=P\{1-e^{-\lambda x}\leq y\}\\ &(1)y< 0\implies F_Y(y)=0\\ &(2)y\geq1\implies F_Y(y)=1\\ &(3)0\leq y\leq1\implies F_Y(y)=P\{0\leq X\leq -\frac1{\lambda}\ln(1-y)\}=F_X(-\frac1{\lambda}\ln(1-y))=1-e^{-\lambda[-\frac1{\lambda}\ln(1-y)]}\\ &2.f_Y(y)=\begin{cases}1,0\leq y< 1\\0,其他\end{cases}\\ \end{aligned}

多元随机变量及其分布

概念

1.(X,Y),F(x,y)=P{Xx,Yy},<x<+,<y<+2.FX(x)=limy+F(x,y),FY(y)=limx+F(x,y)[]1.(X,Y)Pij()P(X=xiY=yi)=P(X=xi,Y=yj)P(Y=yj)=PijPjP(X=1Y=0)=P21P1=2.(X,Y)f(x,y)()fX(x)=+f(x,y)dy,fY(y)=+f(x,y)dxfXY(xy)=f(x,y)fY(y)=3.(X,Y),X,Y    F(x,y)=FX(x)FY(y)    Pij=PiPj,i,j    f(x,y)=fX(x)fY(y)4.(1)(X,Y)f(x,y)={1SD,(x,y)D0,(x,y)D(2)(X,Y)N(μ1,μ2,σ12,σ22,ρ)EX=μ1,EY=μ2,DX=σ12,DY=σ22,ϱxy=ρ \begin{aligned} 1.&联合分布\quad 设(X,Y),F(x,y)=P\{X\leq x,Y\leq y\},-\infty< x<+\infty,-\infty< y<+\infty\\ 2.&边缘分布\quad F_X(x)=\lim_{y\to+\infty}F(x,y),F_Y(y)=\lim_{x\to+\infty}F(x,y)\\ [注]&1.离散型(X,Y)\sim P_{ij}(联合分布律)\\ &条件分布为P(X=x_i\mid Y=y_i)=\frac{P(X=x_i,Y=y_j)}{P(Y=y_j)}=\frac{P_{ij}}{P_{\cdot j}}\\ &P(X=1\mid Y=0)=\frac{P_{21}}{P_{\cdot 1}}\\ &条件=\frac{联合}{边缘}\\ &2.连续型(X,Y)\sim f(x,y)(联合概率密度)\\ &边缘密度为f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy,f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx\\ &条件密度为f_{X\mid Y}(x\mid y)=\frac{f(x,y)}{f_Y(y)}\\ &无论离散还是连续,条件=\frac{联合}{边缘}\\ 3.&独立性\quad 设(X,Y),X,Y独立\iff F(x,y)=F_X(x)\cdot F_Y(y)\\ &\iff P_{ij}=P_{i\cdot}\cdot P_{\cdot j},\forall i,j\\ &\iff f(x,y)=f_X(x)\cdot f_Y(y)\\ 4.&两个分布\\ &(1)均匀分布\quad (X,Y)\sim f(x,y)=\begin{cases}\frac1{S_D},(x,y)\in D\\0,(x,y)\notin D\end{cases}\\ &(2)正态分布\quad (X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)\\ &其中EX=\mu_1,EY=\mu_2,DX=\sigma_1^2,DY=\sigma_2^2,\varrho_{xy}=\rho\\ \end{aligned}

用分布求概率

 [1](X,Y)X Y010a0.410.1b{x=0}{X+Y=1}U=max{X,Y},V=min{X,Y},P={U+V=1}=U=max{X,Y}=(X+Y)+XY2V=min{X,Y}=(X+Y)XY2U+V=X+Y    P(U+V=1)=P{X+Y=1}=0.5[2](X,Y)D={(x,y)1xe2,0y1x}(X,Y)xfX(x)x=eSD=1e21xdx=lnx1e2=20=2    (X,Y)f(x,y)={12,(x,y)D0,(x,y)D线fX(x)={01x12dy,1xe20,={12x,1xe20,    fX(e)=12e[3](X,Y)f(x,y)={x,0<x<1,0<y<x0,Z=XYfZ(z)(X,Y)f(x,y),Z=g(x,y)    fZ(z)1.FZ(z)=P{Zz}=P{g(X,Y)z}=g(x,y)zf(x,y)dσ2.fZ(z)=FZ(z)1.FZ(z)=P{Zz}=P{XYz}(1)z<0    FZ(z)=0(2)z1    FZ(z)=1(3)0z<1    FZ(z)=Df(x,y)dσ=0zdx0x3xdy+z1dxxzx3xdy=32z12z3    fZ(z)={3232z2,0z<10,[4]X,YP{X=0}=P{X=1}=12,P{Yx}=x,0<y1,Z=XYXPi,YfY(y)={1,0<y<10,(1)X;(2)XYFZ(z)=P{Zz}=P{XYz}=P(X=0)P(XYzX=0)+P(X=1)P(XYzX=1)12[P(0z)+P(Yz)]=12FZ(z)={z<0    FZ(z)=0z1    FZ(z)=10z<1    FZ(z)=12(1+z) \begin{aligned} \ [例1]&\color{maroon}(X,Y)\sim \begin{array}{c|cc} X\ Y & 0 & 1 \\ \hline 0 & a & 0.4 \\ 1 & 0.1 & b \\ \end{array}\\ &\color{maroon}若\{x=0\}与\{X+Y=1\}独立,令U=max\{X,Y\},V=min\{X,Y\},则P=\{U+V=1\}=\underline{\quad}\\ &U=max\{X,Y\}=\frac{(X+Y)+\mid X-Y\mid}{2}\\ &V=min\{X,Y\}=\frac{(X+Y)-\mid X-Y\mid}2\\ &U+V=X+Y\implies P(U+V=1)=P\{X+Y=1\}=0.5\\ [例2]&\color{maroon}设(X,Y)在D=\{(x,y)\mid 1\leq x\leq e^2,0\leq y\leq \frac1x\}上服从均匀分布\\ &\color{maroon}则(X,Y)关于x\sim f_X(x)在x=e处得值为\underline{\quad}\\ &S_D=\int_1^{e^2}\frac1xdx=\ln x\mid^{e^2}_1=2-0=2\\ &\implies (X,Y)\sim f(x,y)=\begin{cases}\frac12,(x,y)\in D\\0,(x,y)\notin D\end{cases}\\ &求谁不积谁,不积先定限,限内画条线,先交写下限,后交写上限\\ &f_X(x)=\begin{cases}\int_0^{\frac1x}\frac12dy,1\leq x\leq e^2\\0,其他\end{cases}=\begin{cases}\frac{1}{2x},1\leq x\leq e^2\\0,其他\end{cases}\\ &\implies f_X(e)=\frac1{2e}\\ [例3]&\color{maroon}(X,Y)\sim f(x,y)=\begin{cases}x,0< x< 1,0< y< x\\0,其他\end{cases},求Z=X-Y的f_{Z}(z)\\ &(X,Y)\sim f(x,y),Z=g(x,y)\implies f_Z(z)\\ &1.F_Z(z)=P\{Z\leq z\}=P\{g(X,Y)\leq z\}=\iint_{g(x,y)\leq z}f(x,y)d\sigma\\ &2.f_Z(z)=F_Z'(z)\\ &1.F_Z(z)=P\{Z\leq z\}=P\{X-Y\leq z\}\\ &(1)z<0 \implies F_Z(z)=0\\ &(2)z\geq1\implies F_Z(z)=1\\ &(3)0\leq z<1\implies F_Z(z)=\iint_Df(x,y)d\sigma=\int_0^zdx\int_0^x3xdy+\int_z^1dx\int_{x-z}^x3xdy=\frac32z-\frac12z^3\\ &\implies f_Z(z)=\begin{cases}\frac32-\frac32z^2,0\leq z<1\\0,其他\end{cases}\\ [例4]&\color{maroon}X,Y相互独立,P\{X=0\}=P\{X=1\}=\frac12,P\{Y\leq x\}=x,0< y\leq1,求Z=XY的分布函数\\ &X\sim P_i,Y\sim f_Y(y)=\begin{cases}1,0< y <1\\0,其他\end{cases}\\ &(1)选X;(2)作XY\\ &F_Z(z)=P\{Z\leq z\}=P\{XY\leq z\}=P(X=0)P(XY\leq z\mid X=0)+P(X=1)P(XY\leq z\mid X=1)\\ &\frac12[P(0\leq z)+P(Y\leq z)]=\frac12\\ &F_Z(z)=\begin{cases}z<0 \implies F_Z(z)=0\\z\geq1\implies F_Z(z)=1\\0\leq z<1\implies F_Z(z)=\frac12(1+z)\end{cases}\\ \end{aligned}

数字特征

概念

数学期望与方差

1.(1)EX{XPi    EX=ixiPiXf(x)    EX=+f(x)dx(2)Xpi,Y=g(X)    EY=ig(xi)pi(3)Xf(x),Y=g(X)    EY=+g(x)f(x)dx(4)(X,Y)pij,Z=g(X,Y)    EZ=ijg(xi,yi)pij(5)(X,Y)f(x,y),Z=g(X,Y)    EZ=++g(x,y)f(x,y)dxdy2.DX=E[(XEX)2](1){Xpi    DX=E[(XEX)2]=i(xiEX)2piXf(x)    DX=E[(XEX)2]=+(xEX)2f(x)dx(2):DX=E[(XEX)2]=E[X22XEX+(EX)2]=E(X2)2EXEX+(EX)2]DX=E(X2)(EX)23.(1)Ea=a,E(EX)=EX(2)E(aX+bY)=aEX+bEY,E(i=1naiXi)=i=1naiEXi()(3)X,YE(XY)=EXEY(4)Da=0,D(EX)=0,D(DX)=0(5)X,YD(X±Y)=DX+DY(6)D(aX+b)=a2DX,E(aX+b)=aEX+b(7),D(X±Y)=DX+DY±2Cov(X,Y)D(i=1nXi)=i=1nDXi+21i<jnCov(xi,xj)[]1.01EX=p,DX=pp2=(1p)p,X(10p1p)2.XB(n,p),EX=np,DX=np(1p)3.XP(λ),EX=λ,DX=λ4.XGe(p),EX=1p,DX=1pp25.XU[a,b],EX=a+b2,DX=(ba)2126.XEX(λ),EX=1λ,DX=1λ27.XN(μ,σ2),EX=μ,DX=σ28.Xχ2(n),EX=n,DX=2n \begin{aligned} 1.&期望定义\\ (1)&EX\begin{cases}X\sim P_i\implies EX=\sum_ix_iP_i\\X\sim f(x)\implies EX=\int_{-\infty}^{+\infty}f(x)dx\end{cases}\\ (2)&X\sim p_i,Y=g(X)\implies EY=\sum_ig(x_i)p_i\\ (3)&X\sim f(x),Y=g(X)\implies EY=\int_{-\infty}^{+\infty}g(x)f(x)dx\\ (4)&(X,Y)\sim p_{ij},Z=g(X,Y)\implies EZ=\sum_i\sum_jg(x_i,y_i)p_{ij}\\ (5)&(X,Y)\sim f(x,y),Z=g(X,Y)\implies EZ=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy\\ 2.&方差定义\\ &DX=E[(X-EX)^2]\\ (1)&定义法:\begin{cases}X\sim p_i\implies DX=E[(X-EX)^2]=\sum_i(x_i-EX)^2p_i\\X\sim f(x)\implies DX=E[(X-EX)^2]=\int_{-\infty}^{+\infty}(x-EX)^2f(x)dx\end{cases}\\ (2)&公式法:DX=E[(X-EX)^2]=E[X^2-2\cdot X\cdot EX+(EX)^2]=E(X^2)-2\cdot EX\cdot EX+(EX)^2]\\ &DX=E(X^2)-(EX)^2\\ 3.&性质\\ (1)&Ea=a,E(EX)=EX\\ (2)&E(aX+bY)=aEX+bEY,E(\sum_{i=1}^na_iX_i)=\sum_{i=1}^na_iEX_i(无条件)\\ (3)&若X,Y相互独立,则E(XY)=EXEY\\ (4)&Da=0,D(EX)=0,D(DX)=0\\ (5)&若X,Y相互独立,则D(X\pm Y)=DX+DY\\ (6)&D(aX+b)=a^2DX,E(aX+b)=aEX+b\\ (7)&一般,D(X\pm Y)=DX+DY\pm 2Cov(X,Y)\\ &D(\sum_{i=1}^nX_i)=\sum_{i=1}^nDX_i+2\sum_{1\leq i< j\leq n}Cov(x_i,x_j)\\ [注]&1.0-1分布,EX=p,DX=p-p^2=(1-p)p,X\sim\begin{pmatrix}1&0\\p&1-p\end{pmatrix}\\ &2.X\sim B(n,p),EX=np,DX=np(1-p)\\ &3.X\sim P(\lambda),EX=\lambda,DX=\lambda\\ &4.X\sim Ge(p),EX=\frac1p,DX=\frac{1-p}{p^2}\\ &5.X\sim U[a,b],EX=\frac{a+b}2,DX=\frac{(b-a)^2}{12}\\ &6.X\sim E_X(\lambda),EX=\frac1{\lambda},DX=\frac1{\lambda^2}\\ &7.X\sim N(\mu,\sigma^2),EX=\mu,DX=\sigma^2\\ &8.X\sim \chi^2(n),EX=n,DX=2n\\ \end{aligned}

协方差与相关系数

Cov(X,Y)=E[XEX)(YEY)],Cov(X,X)=E[(XEX)(XEX)]=E[(XEX)2]=DX1.{(X,Y)pij    Cov(X,Y)=ij(xiEX)(uiEY)pij(X,Y)f(x,y)    Cov(X,Y)=++(xEX)(yEY)f(x,y)dxdy2.Cov(X,Y)=E(XYXEYEXY+EXEY)=E(XY)EXEYEXEY+EXEY=E(XY)EXEY3.ρXY=Cov(X,Y)DXDY{=0    X,Y̸=0    X,Y1.Cov(X,Y)=Cov(Y,X)2.Cov(aX,bY)=abCov(X,Y)3.Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)4.ρXY15.ρXY=1    P{Y=aX+b}=1(a>0),ρXY=1    P{Y=aX+b}=1(a<0)Y=aX+b,a>0    ρXY=1,Y=aX+b,a<0    ρXY=1ρXY=0    {Cov(X,Y)=0E(XY)=EXEYD(X+Y)=DX+DYD(XY)=DX+DYX,Y    ρXY=0(X,Y)N(μ,σ2),X,Y    X,Y(ρXY=0) \begin{aligned} &Cov(X,Y)=E[X-EX)(Y-EY)],Cov(X,X)=E[(X-EX)(X-EX)]=E[(X-EX)^2]=DX\\ &1.定义法\\ &\begin{cases}(X,Y)\sim p_{ij}\implies Cov(X,Y)=\sum_i\sum_j(x_i-EX)(u_i-EY)p_{ij}\\(X,Y)\sim f(x,y)\implies Cov(X,Y)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x-EX)(y-EY)f(x,y)dxdy\end{cases}\\ &2.公式法\\ &Cov(X,Y)=E(XY-X\cdot EY-EX\cdot Y+EX\cdot EY)\\ &=E(XY)-EX\cdot EY-EX\cdot EY+EX\cdot EY=E(XY)-EXEY\\ &3.\rho_{XY}=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}\begin{cases}=0\iff X,Y不相关\\\not=0\iff X,Y相关\end{cases}\\ 性质&1.Cov(X,Y)=Cov(Y,X)\\ &2.Cov(aX,bY)=abCov(X,Y)\\ &3.Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)\\ &4.\mid \rho_{XY}\mid\leq1\\ &5.\rho_{XY}=1\iff P\{Y=aX+b\}=1(a>0),\rho_{XY}=-1\iff P\{Y=aX+b\}=1(a<0)\\ &考试时:Y=aX+b,a>0\implies \rho_{XY}=1,Y=aX+b,a<0\implies \rho_{XY}=-1\\ 小结&五个充要条件\\ &\rho_{XY}=0\iff\begin{cases}Cov(X,Y)=0\\E(XY)=EX\cdot EY\\D(X+Y)=DX+DY\\D(X-Y)=DX+DY\end{cases}\\ &X,Y独立\implies \rho_{XY}=0\\ &若(X,Y)\sim N(\mu,\sigma^2),则X,Y独立\iff X,Y不相关(\rho_{XY}=0)\\ \end{aligned}

例题

 [1]x1,x2,x3P(λ),Y=13(x1+x2+x3),EY2=E(x1,x2,x3)=3λD(x1,x2,x3)=3λEY=E(13(x1,x2,x3))=133λ=λDY=D(13(x1,x2,x3))=193λ=λEY2=(EY)2+DY=λ2+λ3[2]Xf(x)={38x2,0<x<20,,E(1x2)=E(1x2)=+1x2f(x)dx=021x238x2dx=34[3]XB(1,12),YB(1,12),D(X+Y)=1,ρXY=ρXY=Cov(X,Y)DXDY1=D(X+Y)+DX+DY+2Cov(X,Y)    Cov(X,Y)=14ρXY=141212=1[4](X,Y)f(x,y)={1,0yx10,,Cov(X,Y)=Cov(X,Y)=EXYEXEYEXY=Dxyf(x,y)dxdy=0EY=E1Y=++x0y1f(x,y)dxdy=++yf(x,y)dσ=Dy1dσ=0Cov(X,Y)=EXYEXEY=0 \begin{aligned} \ [例1]&\color{maroon}设x_1,x_2,x_3相互独立\sim P(\lambda),令Y=\frac13(x_1+x_2+x_3),则EY^2=\underline{\quad}\\ &E(x_1,x_2,x_3)=3\lambda\quad D(x_1,x_2,x_3)=3\lambda\\ &EY=E(\frac13(x_1,x_2,x_3))=\frac133\lambda=\lambda\\ &DY=D(\frac13(x_1,x_2,x_3))=\frac193\lambda=\lambda\\ &EY^2=(EY)^2+DY=\lambda^2+\frac{\lambda}3\\ [例2]&\color{maroon}X\sim f(x)=\begin{cases}\frac38x^2,0< x< 2\\0,其他\end{cases},则E(\frac1{x^2})=\underline{\quad}\\ &E(\frac1{x^2})=\int_{-\infty}^{+\infty}\frac1{x^2}f(x)dx=\int_0^2\frac1{x^2}\frac38x^2dx=\frac34\\ [例3]&\color{maroon}X\sim B(1,\frac12),Y\sim B(1,\frac12),D(X+Y)=1,则\rho_{XY}=\underline{\quad}\\ &\rho_{XY}=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}\\ &1=D(X+Y)+DX+DY+2Cov(X,Y)\implies Cov(X,Y)=\frac14\\ &\rho_{XY}=\frac{\frac14}{\frac12\cdot\frac12}=1\\ [例4]&\color{maroon}(X,Y)\sim f(x,y)=\begin{cases}1,0\leq \mid y\mid\leq x\leq1\\0,其他\end{cases},则Cov(X,Y)=\underline{\quad}\\ &Cov(X,Y)=EXY-EXEY\\ &其中EXY=\iint_Dx\cdot yf(x,y)dxdy=0\\ &EY=E\cdot1\cdot Y=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}x^0y^1f(x,y)dxdy=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yf(x,y)d\sigma=\iint_Dy\cdot1d\sigma=0\\ &Cov(X,Y)=EXY-EXEY=0 \end{aligned}

大数定律与中心极限定理

依概率收敛

{Xn}r,vXr,v(a)ε>0,limnP{XnX<ε}=1limnP{Xna<ε}=1,{Xn}XaXnXXaa[1]{Xn},Xnfn(x)=nπ(1+n2x2),xR,Xn0P{ε<Xn<ε}=εεnπ(1+n2x2)dx=1πarctanxεε=2πarctannεlimn2πarctannε=1 \begin{aligned} &设\{X_n\}为一r,v序列,X为一r,v(或a为常数)\\ &若\forall \varepsilon>0,恒有\lim_{n\to\infty}P\{\mid X_n-X\mid<\varepsilon\}=1或\lim_{n\to\infty}P\{\mid X_n-a\mid<\varepsilon\}=1,则称\{X_n\}依概率收敛于X或a\\ &记:X_n\to X 或 X_a\to a\\ [例1]&\color{maroon}设\{X_n\},X_n\sim f_n(x)=\frac{n}{\pi(1+n^2x^2)},x\in R,证X_n\to0\\ &P\{-\varepsilon<X_n<\varepsilon\}=\int_{-\varepsilon}^{\varepsilon}\frac{n}{\pi(1+n^2x^2)}dx=\frac1{\pi}\arctan x\mid^{\varepsilon}_{-\varepsilon}=\frac{2}{\pi}\arctan n\varepsilon\\ &\lim_{n\to\infty}\frac2{\pi}\arctan n\varepsilon=1\\ \end{aligned}

三个定律与两个定理

大数定律

1.{Xn}(n=1,2, )0DXk1ni=1nXi1ni=1nEXi=E(1ni=1nXi)k2.unnAAp(0<p<1),unnp3.{Xn}EXn=μ1ni=1nXiμ[]1ni=1nXiE(1ni=1nXi) \begin{aligned} 1.&切比雪夫大数定律\\ &设\{X_n\}(n=1,2,\cdots)0是相互独立的随机变量序列,若方差DX_k存在且一致有上界,则\\ &\frac1n\sum_{i=1}^nX_i\to\frac1n\sum_{i=1}^nEX_i=E(\frac1n\sum_{i=1}^nX_i)\\ &一致有上界皆有共同的上界,与k无关\\ 2.&伯努利大数定律\\ &设u_n是n重伯努利试验中事件A发生的次数,在每次试验中A发生的概率为p(0<p < 1),则\frac{u_n}n\to p\\ 3.&辛钦大数定律\\ &设\{X_n\}是独立同分布的随机变量序列,若EX_n=\mu存在,则\frac1n\sum_{i=1}^nX_i\to\mu\\ [注]&在满足一定条件的基础上,所有大数定律都在讲一个结论 \frac1n\sum_{i=1}^nX_i\to E(\frac1n\sum_{i=1}^nX_i)\\ \end{aligned}

中心极限定理

XiiidF(μ,σ2),μ=EXi,σ2=DXi    i=1nXinN(nμ,nσ2)    i=1nXinμnσnN(0,1),limnP{i=1nXinμnσx}=Φ(x)[1]X1,X2, ,XniidP(λ),limnP{i=1nXinλnλx}={E(i=1nXi)=nλD(i=1nXi)=nλlimnP{i=1nXinλnλx}=Φ(x) \begin{aligned} &不论X_i\sim^{iid}F(\mu,\sigma^2),\mu=EX_i,\sigma^2=DX_i\implies \sum_{i=1}^n X_i\sim^{n\to\infty}N(n\mu,n\sigma^2)\\ &\implies \frac{\sum_{i=1}^n X_i-n\mu}{\sqrt{n}\sigma}\sim^{n\to\infty}N(0,1),即\lim_{n\to\infty}P\left\{\frac{\sum_{i=1}^n X_i-n\mu}{\sqrt{n}\sigma}\leq x\right\} =\Phi(x)\\ [例1]&\color{maroon}假设X_1,X_2,\cdots,X_n\sim^{iid}P(\lambda),则\lim_{n\to\infty}P\{\frac{\sum_{i=1}^n X_i-n\lambda}{\sqrt{n\lambda}}\leq x\}=\underline{\quad}\\ &\begin{cases}E(\sum_{i=1}^n X_i)=n\lambda\\D(\sum_{i=1}^n X_i)=n\lambda\end{cases}\\ &\lim_{n\to\infty}P\{\frac{\sum_{i=1}^n X_i-n\lambda}{\sqrt{n\lambda}}\leq x\}=\Phi(x)\\ \end{aligned}

数理统计初步

总体与样本

1.XF(x)2.XiiidF(x) \begin{aligned} 1.&总体\quad X\sim F(x)\\ 2.&样本\quad X_i\sim^{iid}F(x)\\ \end{aligned}

点估计

1.(1)X=1ni=1nXi()(2)EX()(3)EX=X()2.=(1)L(θ)={i=1np(xi,θ)r=1nf(xi,θ)(2){dL(θ)dθ=0    θ^dlnL(θ)dθ=0    θ^L(θ)θ     \begin{aligned} 1.&矩估计\\ (1)&\overline{X}=\frac1n\sum_{i=1}^n X_i(样本估计)\\ (2)&EX(客观存在的均值)\\ (3)&EX=\overline{X}(强行令其相等)\\ 2.&最大似然估计\\ &参数=?时,观测值出现的概率最大\\ (1)&写L(\theta)=\begin{cases}\prod_{i=1}^np(x_i,\theta)\\\prod_{r=1}^nf(x_i,\theta)\end{cases}\\ (2)&\begin{cases}令\frac{dL(\theta)}{d\theta}=0\implies\hat{\theta}\\\frac{d\ln L(\theta)}{d\theta}=0\implies \hat{\theta}\\L(\theta)关于\theta单调\implies 定义\end{cases} \end{aligned}

 [1]X(0123θ22θ(1θ)θ212θ),0<θ<12,X:3,1,3,0,3,1,2,3.θ(1)1.x=18(3+1+3+0+3+1+2+3)=22.EX=0θ2+12θ(1θ)+2θ2+3(12θ)=34θ3.34θ=2    θ^=14(2)L(θ)=(12θ)4[2θ(1θ)]2θ2θ2=4θ6(1θ)2(12θ)4    lnL(θ)=ln4+6lnθ+2ln(1θ)+4ln(12θ)    dlnL(θ)dθ=6θ+21θ+4(2)12θ=0θ=7±1312    θ^=71312[2]XF(x,α,β)={1(αx)β,αx0,α>x,α1,β>1,X1,X2, ,XniidX,(1)α=1,β(2)α=1,β(3)β=2,α(1)α=1    XF(x,β)={11xβ,x10,x<1xf(x,β)={βxβ+1,x10,x<1X=1ni=1nXiEX=1+xβxβ+1dx=ββ1X=ββ1    β^=xx1(2)L(β)={βn(x1,x2, ,xn)β+1,xi10,    lnL(β)=nlnβ(β+1)i=1nlnxi    dlnL(β)dβ=nβi=1nlnxi=0    β^=ni=1nlnxi(3)β=2,XF(x,α)={1α2x2,αx0,α>x    xf(x,α)={2α2x3,αx0,α>xL(α)={2nα2n(x1x2xn)3,xiα0,    xiα    lnL(α)=nln2+2nlnα3i=1nlnxi    αln2(α)dα=2nα>0    L(α)αα^=min{x1,x2, ,xn} \begin{aligned} \ [例1]&\color{maroon}X\sim\begin{pmatrix}0&1&2&3\\\theta^2&2\theta(1-\theta)&\theta^2&1-2\theta\end{pmatrix},0<\theta<\frac12,从X中抽:3,1,3,0,3,1,2,3.\\ &\color{maroon}求\theta得矩估计值与最大似然估计值\\ (1)&1.\overline{x}=\frac18(3+1+3+0+3+1+2+3)=2\\ &2.EX=0\cdot\theta^2+1\cdot2\theta(1-\theta)+2\theta^2+3(1-2\theta)=3-4\theta\\ &3.令3-4\theta=2\implies \hat{\theta}=\frac14\\ (2)&L(\theta)=(1-2\theta)^4[2\theta(1-\theta)]^2\theta^2\theta^2=4\theta^6(1-\theta)^2(1-2\theta)^4\\ &\implies \ln L(\theta)=\ln4+6\ln \theta+2\ln(1-\theta)+4\ln(1-2\theta)\\ &\implies \frac{d\ln L(\theta)}{d\theta}=\frac6\theta+\frac{-2}{1-\theta}+\frac{4(-2)}{1-2\theta}=0\\ &\theta=\frac{7\pm\sqrt{13}}{12}\implies\hat{\theta}=\frac{7-\sqrt{13}}{12}\\ [例2]&\color{maroon}X\sim F(x,\alpha,\beta)=\begin{cases}1-(\frac{\alpha}{x})\beta,\alpha\leq x\\0,\alpha>x\end{cases},\alpha\geq1,\beta>1,X_1,X_2,\cdots,X_n\sim^{iid}X,求\\ &\color{maroon}(1)\alpha=1,\beta的矩估计量\\ &\color{maroon}(2)\alpha=1,\beta的最大似然估计量\\ &\color{maroon}(3)\beta=2,\alpha的最大似然估计量\\ &(1)\alpha=1\implies X\sim F(x,\beta)=\begin{cases}1-\frac1{x^{\beta}},x\geq1\\0,x<1\end{cases}\\ &x\sim f(x,\beta)=\begin{cases}\frac{\beta}{x^{\beta+1}},x\geq1\\0,x<1\end{cases}\\ &\overline{X}=\frac1n\sum_{i=1}^nX_i\\ &EX=\int_1^{+\infty}x\cdot\frac{\beta}{x^{\beta+1}}dx=\frac{\beta}{\beta-1}\\ &\overline{X}=\frac{\beta}{\beta-1}\implies \hat{\beta}=\frac{\overline{x}}{\overline{x}-1}\\ &(2)L(\beta)=\begin{cases}\frac{\beta^n}{(x_1,x_2,\cdots,x_n)^{\beta+1}},x_i\geq1\\0,其他\end{cases}\\ &\implies \ln L(\beta)=n\ln\beta-(\beta+1)\sum_{i=1}^n\ln x_i\\ &\implies \frac{d\ln L(\beta)}{d\beta}=\frac{n}{\beta}-\sum_{i=1}^n\ln x_i=0\implies \hat{\beta}=\frac{n}{\sum_{i=1}^n\ln x_i}\\ &(3)\beta=2,X\sim F(x,\alpha)=\begin{cases}1-\frac{\alpha^2}{x^2},\alpha\leq x\\0,\alpha>x\end{cases}\\ &\implies x\sim f(x,\alpha)=\begin{cases}\frac{2\alpha^2}{x^3},\alpha\leq x\\0,\alpha>x\end{cases}\\ &L(\alpha)=\begin{cases}\frac{2^n\cdot\alpha^{2n}}{(x_1x_2\cdots x_n)^3},x_i\geq\alpha\\0,其他\end{cases}\\ &\implies 一切x_i\geq\alpha\implies \ln L(\alpha)=n\ln2+2n\ln\alpha-3\sum_{i=1}^n\ln x_i\implies \frac{\alpha\ln2(\alpha)}{d\alpha}=\frac{2n}{\alpha}>0\\ &\implies L(\alpha)关于\alpha\\ &\hat{\alpha}=min\{x_1,x_2,\cdots,x_n\}\\ \end{aligned}