【信号与系统】笔记(4-2)拉普拉斯变换的性质

Author:AXYZdong
自动化专业 工科男
有一点思考,有一点想法,有一点理性!
[email protected]

前言

连续系统s域分析相关内容

一、线性性质

若 :
L[f1(t)]=F1(s),Re[s]>σ1\mathcal{L}[f_1(t)]=F_1(s) , Re[s]>\sigma_1

L[f2(t)]=F2(s),Re[s]>σ2\mathcal{L}[f_2(t)]=F_2(s) , Re[s]>\sigma_2

则:L[a1f1(t)+a2f2(t)]=a1F1(t)+a2F2(t),Re[s]>max(σ1,σ2)\mathcal{L}[a_1f_1(t)+a_2f_2(t)]=a_1F_1(t)+a_2F_2(t),Re[s]>max(\sigma_1,\sigma_2)

例:L[δ(t)+ϵ(t)]=1+1/s,σ>0\mathcal{L}[\delta(t)+\epsilon(t)]=1+1/s,\sigma>0

二、尺度变换

若 :
L[f(t)]=F(s),Re[s]>σ0,a>0\mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0,且有实数 a>0

则:
L[f(at)]=1aF(sa),Re[s]>aσ0 \mathcal{L}[f(at)]=\frac{1}{a}F(\frac{s}{a}),Re[s]>a\sigma_0
【信号与系统】笔记(4-2)拉普拉斯变换的性质

三、时移特性

若 :
L[f(t)]=F(s),Re[s]>σ0,t0>0\mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0,且有实常数 t_0>0

则:
L[f(tt0)ϵ(tt0)]=est0F(s),Re[s]>σ0 \mathcal{L}[f(t-t_0)\epsilon(t-t_0)]=e^{-st_0}F(s),Re[s]>\sigma_0
例: L[f(att0)ϵ(att0)]=?\mathcal{L}[f(at-t_0)\epsilon(at-t_0)]=?

先时移,再尺度变换,可得:L[f(att0)ϵ(att0)]=1aesat0F(sa)\mathcal{L}[f(at-t_0)\epsilon(at-t_0)]=\frac{1}{a}e^{-\frac{s}{a}t_0}F(\frac{s}{a})

四、复频移特性

若 :
L[f(t)]=F(s),Re[s]>σ0,sa=σa+jωa\mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0,且有复常数 s_a=\sigma_a+j\omega_a

则:
L[f(t)esat]=F(ssa),Re[s]>σ0+σa \mathcal{L}[f(t)e^{s_a t}] =F(s-s_a),Re[s]>\sigma_0+\sigma_a

例:因果信号 f(t)f(t) 的象函数 F(s)=ss2+1F(s)=\frac{s}{s^2+1}

问:L[etf(3t2)]=?\mathcal{L}[e^{-t}f(3t-2)]=?

先时移,再尺度变换,最后复频移
L[f(t)]=ss2+1    L[f(t2)]=ss2+1e2s\mathcal{L}[f(t)]=\frac{s}{s^2+1}\implies\mathcal{L}[f(t-2)]=\frac{s}{s^2+1}\cdot e^{-2s}
L[f(3t2)]=13s/3(s/3)2+1e2(s/3)=ss2+9e2s3\mathcal{L}[f(3t-2)]=\frac{1}{3}\cdot\frac{s/3}{(s/3)^2+1}\cdot e^{-2(s/3)}=\frac{s }{s ^2+9}\cdot e^{-\frac{2s}{3}}
L[etf(3t2)]==s+1(s+1)2+9e2(s+1)3\mathcal{L}[e^{-t}f(3t-2)]==\frac{s+1 }{(s+1) ^2+9}\cdot e^{-\frac{2(s+1)}{3}}

五、时域的微分特性

若 :
L[f(t)]=F(s),Re[s]>σ0\mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0

则:L[f(t)]=sF(s)f(0)\mathcal{L}[f'(t)]=sF(s)-f(0_{-})
L[f(t)]=s2F(s)sf(0)f(0) \mathcal{L}[f''(t)]=s^2F(s)-sf(0_{-})-f(0_{-})
L[f(n)(t)]=snF(s)Σm=0n1sn1mf(m)(0) \mathcal{L}[f^{(n)}(t)]=s^nF(s)-\Sigma_{m=0}^{n-1}s^{n-1-m}f^{(m)}(0_{-})

若: f(t)f(t) 为因果信号,则 L[f(n)(t)]=snF(s)\mathcal{L}[f^{(n)}(t)]=s^nF(s)

因果信号时间轴从零开始,f(0)=0f(0_{-})=0

例:(1)L[δ(n)(t)]=?\mathcal{L}[\delta^{(n)}(t)]=? (2)L[ddt[ϵ(t)cos2t]]=?\mathcal{L}[\frac{d}{dt}[\epsilon(t)\cos2t]]=? (3)L[ddt[cos2t]]=?\mathcal{L}[\frac{d}{dt}[ \cos2t]]=?

(1)L[δ(n)(t)]=sn\mathcal{L}[\delta^{(n)}(t)]=s^n
(2)ϵ(t)cos2t\epsilon(t)\cos2t 含有 ϵ(t)\epsilon(t) ,为因果信号,利用公式,可得:L[ddt[ϵ(t)cos2t]]=sss2+4(L[cos2t]=ss2+4)\mathcal{L}[\frac{d}{dt}[\epsilon(t)\cos2t]]=s\cdot\frac{s}{s^2+4},(\mathcal{L}[\cos2t]=\frac{s}{s^2+4})
(3)cos2t\cos2t 非因果信号,利用公式,可得:L[ddt[cos2t]]=sF(s)f(0)=sss2+41{F(s)=L[cos2t]=ss2+4}\mathcal{L}[\frac{d}{dt}[ \cos2t]]=sF(s)-f(0{-})=s\cdot\frac{s}{s^2+4}-1,\lbrace F(s)=\mathcal{L}[\cos2t]=\frac{s}{s^2+4}\rbrace

六、时域的积分特性

若 :
L[f(t)]=F(s),Re[s]>σ0\mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0

则:
L[0tf(τ)dτ]=F(s)s+f(1)(0)s\mathcal{L}[\int _{0}^{t}f(\tau)d\tau]=\frac{F (s)}{s}+\frac{f^{(-1)}(0_{-})}{s}

例:L[t2ϵ(t)]=?\mathcal{L}[t^2\epsilon(t)]=?

(1)L[tϵ(t)]=L[0tϵ(τ)dτ]=1s1s=1s2(L[ϵ(t)]=1s)\mathcal{L}[t\epsilon(t)]= \mathcal{L}[\int _{0}^{t}\epsilon(\tau)d\tau]=\frac{1}{s}\cdot \frac{1}{s}=\frac{1}{s^2},(\mathcal{L[\epsilon(t)]=\frac{1}{s}})
(2)L[t2ϵ(t)]=2L[0tτϵ(τ)dτ]=21s1s2=2s3\mathcal{L}[t^2\epsilon(t)]= 2\mathcal{L}[\int _{0}^{t}\tau \epsilon(\tau)d\tau]=2\cdot\frac{1}{s}\cdot\frac{1}{s^2}=\frac{2}{s^3}

七、卷积定理

时域:若因果函数

L[f1(t)]=F1(s),Re[s]>σ1\mathcal{L}[f_1(t)]=F_1(s),Re[s]>\sigma_1

L[f2(t)]=F2(s),Re[s]>σ2\mathcal{L}[f_2(t)]=F_2(s),Re[s]>\sigma_2

则:L[f1(t)f2(t)]=F1(s)F2(s)\mathcal{L}[f_1(t)*f_2(t)]=F_1(s)F_2(s)

s域卷积定理:
L[f1(t)f2(t)]=12πjσjσ+jF1(η)F2(sη)dη\mathcal{L}[f_1(t)\cdot f_2(t)]=\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}F_1(\eta)F_2(s-\eta)d\eta

八、s域的微分与积分

若 :
L[f(t)]=F(s),Re[s]>σ0\mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0

则:
L[(t)f(t)]=dF(s)dsL[(t)nf(t)]=dnF(s)dsn\mathcal{L}[(-t)f(t)]=\frac{dF(s)}{ds},\mathcal{L}[(-t)^nf(t)]=\frac{d^nF(s)}{ds^n}
L[f(t)t]=sF(η)dη\mathcal{L}[\frac{f(t)}{t}]=\int_{s}^{\infty}F(\eta)d\eta

例:L[t2e2tϵ(t)]=?\mathcal{L}[t^2e^{-2t}\epsilon(t)]=?

L[e2tϵ(t)]=1s+2    L[t2e2tϵ(t)]=d2ds2(1s+2)=2(s+2)3\mathcal{L}[ e^{-2t}\epsilon(t)]=\frac{1}{s+2}\implies \mathcal{L}[t^2 e^{-2t}\epsilon(t)]=\frac{d^2}{ds^2}(\frac{1}{s+2})=\frac{2}{(s+2)^3}

九、初值定理和中值定理

初值: f(0+)=limt0+f(t)=limssF(s)f(0_{+})=\lim_{t\to 0_{}+}f(t)=\lim_{s\to \infty}sF(s)
终值:若 f(t)f(t)tt\to \infty 时存在 ,且 L[f(t)]=F(s),Re[s]>σ0,σ0<0\mathcal{L}[f(t)]=F (s),Re[s]>\sigma_0,\sigma_0<0
则:f()=lims0sF(s)f(\infty)=\lim_{s\to 0}sF(s)

总结:

拉普拉斯变换的性质傅里叶变换的性质 注意区别

性质很重要!!!性质很重要!!!性质很重要!!!


先赞后看,养成习惯!!!^ _ ^ ❤️ ❤️ ❤️
码字不易,大家的支持就是我坚持下去的动力。点赞后不要忘了关注我哦!

如有错误,还请您批评改正 ^ _ ^ ???? ???? ????