1.弧长
引入: 如图所示:图中有条线没画出来,S0−a.

ΔS=Si−Si−1(ΔS)≈(Δx)2+(Δy)2(Dx)2=(dx)2+(dy)2(极限情况)ds=dx2+dy2ds=1+(dxdy)dx弧长=Sn−S0=∫ab1+(dxdy)2dx=∫ds∫ab1+(f′(x))2dx(y=f(x))
Ex1:
y=mx.
解:
y′=m,ds=1+(y′)2dx=1+m2dxLength:0≤x≤10∫0101+m2dx=101+m2

如图所示,就可以得出此函数的弧长…
Ex2:
y=1−x2
y′=1−x2−xds=1+(y′)2=1−x21l=∫0a1−x2dx=sin−1x∣0al=sin−1a,同理得,sinl=a

Ex3:
抛物线的长度:图形如图所示:

y=x2,y′=2xds=1+(2x)2dxarc(0≤x≤a)=∫0a1+4x2dx=21∫0asec3udu=[41ln(2x+1+4x2)+21∗1+4x2]∣0a
Ex4
曲面面积:y=x2绕x轴旋转。

dA=(2πy)ds表面积=∫0a2πx21+4x2dx
Ex5:
球面面积:

y=a2−x2,y′=a2−x2−x1+(a2−x2−x)2=a2−x2a2area=∫x1x22πyds=∫x1x22πa2−x2a2−x2a2dx=∫x1x22πadx=2πadx=2πa(x2−x1)
Ex6:
{x=2sinty=cost,如图所示:

41x2+y2=sin2t+cos2t=1dtds=(2cost)2+(sint)2弧长=∫02π4cos2t+sin2tdt椭球的表面积:绕y轴旋转dA=∫0π2π(2sint)4cos2t+sin2tdt