MIT_单变量微积分_28

1.弧长

引入: 如图所示:图中有条线没画出来,S0aS_0 - a.

MIT_单变量微积分_28
ΔS=SiSi1(ΔS)(Δx)2+(Δy)2(Dx)2=(dx)2+(dy)2()ds=dx2+dy2ds=1+(dydx)dx=SnS0=ab1+(dydx)2dx=dsab1+(f(x))2dx(y=f(x))\Delta S = S_i-S_{i-1}\\ (\Delta S) \approx(\Delta x)^2+(\Delta y)^2\\ (Dx)^2=(dx)^2+(dy)^2(极限情况)\\ ds=\sqrt{dx^2+dy^2}\\ ds=\sqrt{1+(\frac{dy}{dx})} dx\\ 弧长=S_n-S_0\\ =\int_a^b\sqrt{1+(\frac{dy}{dx})^2}dx=\int ds\\ \int_a^b\sqrt{1+(f'(x))^2}dx(y=f(x))
Ex1:y=mxy=mx.
解:
y=m,ds=1+(y)2dx=1+m2dxLength0x100101+m2dx=101+m2y'=m,ds=\sqrt{1+(y')^2}dx=\sqrt{1+m^2}dx\\ Length: 0 \leq x \leq 10\\ \int_0^{10}\sqrt{1+m^2}dx=10\sqrt{1+m^2}
MIT_单变量微积分_28
如图所示,就可以得出此函数的弧长…
Ex2:y=1x2y=\sqrt{1-x^2}
y=x1x2ds=1+(y)2=11x2l=0adx1x2=sin1x0al=sin1a,sinl=ay'=\frac{-x}{\sqrt{1-x^2}}\\ ds=\sqrt{1+(y')^2}=\sqrt{\frac{1}{1-x^2}}\\ l=\int_0^a\frac{dx}{\sqrt{1-x^2}}=sin^{-1}x|_0^a\\ l=sin^{-1}a,同理得,sin l = a

MIT_单变量微积分_28
Ex3:抛物线的长度:图形如图所示:
MIT_单变量微积分_28
y=x2,y=2xds=1+(2x)2dxarc(0xa)=0a1+4x2dx=120asec3udu=[14ln(2x+1+4x2)+121+4x2]0ay=x^2,y'=2x\\ ds=\sqrt{1+(2x)^2}dx\\ arc(0 \leq x \leq a)=\int_0^a\sqrt{1+4x^2}dx\\ =\frac{1}{2}\int_0^asec^3udu\\ =[\frac{1}{4}ln(2x+\sqrt{1+4x^2})+\frac{1}{2}*\sqrt{1+4x^2}]|_0^a
Ex4曲面面积:y=x2xy=x^2绕x轴旋转。
MIT_单变量微积分_28
dA=(2πy)ds=0a2πx21+4x2dxdA=(2\pi y)ds\\ 表面积=\int_0^a2 \pi x^2\sqrt{1+4x^2}dx
Ex5:球面面积:
MIT_单变量微积分_28
y=a2x2,y=xa2x21+(xa2x2)2=a2a2x2area=x1x22πyds=x1x22πa2x2a2a2x2dx=x1x22πadx=2πadx=2πa(x2x1)y=\sqrt{a^2-x^2},y'=\frac{-x}{\sqrt{a^2-x^2}}\\ 1+(\frac{-x}{\sqrt{a^2-x^2}})^2=\frac{a^2}{a^2-x^2}\\ area=\int_{x1}^{x2}2 \pi y ds\\ =\int_{x_1}^{x2}2 \pi \sqrt{a^2-x^2}\sqrt{\frac{a^2}{a^2-x^2}}dx\\ =\int_{x_1}^{x2}2\pi adx\\ =2\pi adx=2\pi a(x_2-x_1)
Ex6:{x=2sinty=cost\left\{\begin{matrix} x = 2 sint& \\ y = cost& \end{matrix}\right.,如图所示:
MIT_单变量微积分_28
14x2+y2=sin2t+cos2t=1dsdt=(2cost)2+(sint)2=02π4cos2t+sin2tdtydA=0π2π(2sint)4cos2t+sin2tdt\frac{1}{4}x^2+y^2=sin^2t+cos^2t=1\\ \frac{ds}{dt}=\sqrt{(2cost)^2+(sint)^2}\\ 弧长=\int_0^{2\pi}\sqrt{4cos^2t+sin^2t}dt\\ 椭球的表面积:绕y轴旋转\\ dA=\int_0^{\pi}{2\pi(2sint)\sqrt{4cos^2t+sin^2t}}dt