MIT_单变量微积分_12

1. 牛顿迭代法

Ex1:
x2=5,f(x)=x25,f(x)=0xx^2=5,f(x)=x^2-5,求f(x)=0时的x.
MIT_单变量微积分_12

yy0=m(xx0)y-y_0=m(x-x_0)
y=0,y=0,\Rightarrow

0y0=m(x1+x0)x1=y0m+x0=x0y0m=x0f(x0)f(x0)0-y_0=m(x_1+x_0)\\ x_1=\frac{-y_0}{m}+x_0\\ =x_0-\frac{y_0}{m}\\ =x_0-\frac{f(x_0)}{f'(x_0)}

牛顿法:
xn+1=xnf(x0)f(x0)x_{n+1}=x_n-\frac{f(x_0)}{f'(x_0)}
x0=2,f(x)=x25x_0=2,f(x)=x^2-5
f(x)=2xf'(x)=2x
x1=x0x0252x0=x012x0+52x0=12x0+52x0x_1=x_0-\frac{x_0^2-5}{2x_0}\\=x_0-\frac{1}{2}x_0+\frac{5}{2x_0}\\ =\frac{1}{2}x_0+\frac{5}{2x_0}
依次进行x2=16172x_2=\frac{161}{72}
x3=1216172+5272161=x_3=\frac{1}{2}*\frac{161}{72}+\frac{5}{2}*\frac{72}{161}=??????.

n 5xn\sqrt{5}-x_n
0 21012*10^{-1}
1 21022*10^{-2}
2 21052*10^{-5}
3 210102*10^{-10}
. …